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ABSTRACT

The Ecuadorian Quaternary volcanic arc is characterized by about 60 volcanoes many of which are active or

potentially active. This volcanic activity is the result of the subduction processes of the Nazca Plate beneath

the north-western part of South America. The geochemical signature of the discharged fluids from these vol-

canic systems gives an important contribution to the comprehension of the subduction processes in the

South-American region. In this work, we present the first systematic geochemical characterization of dis-

charged fluids from the entire Ecuadorian volcanic arc on the basis of the chemical and isotopic composition

of 56 samples of thermal and cold waters, as well as 32 dissolved and 27 bubbling gases collected from

north to south across the arc. The isotopic composition of waters reveals a mainly meteoric origin, while the

chemistry of the dissolved gases is characterized by He and CO2 contents, 2–3 orders of magnitude higher

than the air saturated water values, which implies very active gas–water interaction processes with deep flu-

ids. Moreover, both dissolved and bubbling gases’ isotopic signature shows a wide compositional range, with

helium ranging between 0.1 and 7.12 R ⁄ Ra and carbon ranging from )1.75 to )10.50& d13C(TDIC). Such iso-

topic features may be related to the presence of at least two distinct end-member sources: the mantle and

the crust. Finally, this geochemical study clearly reveals the two distinct geographic parts of the arc, showing

different isotopic characteristics of fluids for the Quaternary active volcanism, (north of 2�S), and for the inac-

tive arc, (south of 2�S).
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INTRODUCTION

The Ecuadorian Quaternary volcanic arc is characterized by

at least 60 volcanoes (Hall & Beate 1991). At least 10 of

these volcanoes experienced Holocene eruptions, indicating

that they are potentially active; four of them, i.e. Pichincha,

Tungurahua, Sangay and Reventador, are currently erupt-

ing or have erupted during the last 15 years. Interestingly,

most of these Quaternary volcanic edifices display associated

hydrothermal systems; fluids related to these hydrothermal

sources are the only surface manifestation that can be easily

accessed to provide information about the volcanic activity.

Moreover, the collection of fumarolic gases in the summit

is difficult and potentially unsafe considering the dimen-

sions of the volcanic edifices, their high altitudes

(>4500 masl) and their potential explosive activity.

On the other hand, the Ecuadorian volcanic arc repre-

sents a great potential for harnessing geothermal energy in

this country, although appraisal of all geothermal prospects

is still at an early stage.

In this framework, several geothermal areas along the

Ecuadorian Andes have been investigated to provide a pre-

liminary geochemical characterization of the fluids, to dis-

criminate the hydrothermal reservoirs and to identify the
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isotopic signature of volcanic and geothermal fluids (mainly

He, C, N).

GEODYNAMIC CONTEXT

In Ecuador, magmatism results from the subduction of

the Nazca Plate (>22 My in age; Lonsdale 1978; Lons-

dale & Klitgord 1978) beneath the North Andean Block,

an independent block located in the north-western part

of South America (Pennington 1981; Kellogg & Vega

1995; Witt et al. 2006). The average rate of convergence

is around 58 mm year)1 with an almost E–W direction

(Trenkamp et al. 2002). An interesting geomorphological

feature of this subduction system is the presence of the

Carnegie Ridge, which is the product of the uninter-

rupted interaction of the Galápagos hot spot and the

Cocos-Nazca Spreading Centre (Sallarès and Charvis,

2003) (Fig. 1A).

The subducting Carnegie Ridge is covered by a 400–

500 m thick sedimentary blanket consisting of carbonate

sediments (Michaud et al. 2005). Sediments facing the

northern Ecuadorian coast line are composed by siliceous

nanofossil ooze, chalk and limestone (Hein & Yeh 1983).

The Ecuadorian Quaternary volcanic arc is limited to the

south at 2�S and comprises at least 60 volcanic edifices that

are distributed in three different domains following a
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Fig. 1. (A) Geodynamical setting of the Ecuadorian Arc (modified from Gutscher et al., 1999). (B) Ecuadorian volcanoes distribution map from (Hall & Beate

1991). Numbers indicate the different volcanic edifices; i = Quaternary volcanoes, ii = proximal deposits, iii = distal deposits, iv = caldera rim, v = tectonic

alignments. (C) Schematic map of the geomorphological ⁄ geological zones of Ecuador (modified from Aspden et al. 1992a,b). WC = Western Cordillera,

EC = Eastern Cordillera and IV = Interandean Valley.
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roughly NNE trench orientation: (i) The Volcanic Front,

where the volcanoes are built over the Western Cordillera for-

mations, (ii) the Main Arc, which includes the Interandean

Valley volcanoes and the Eastern Cordillera volcanoes and

(iii) the Back Arc volcanoes emplaced in the headwaters of

the Amazonian basin (Fig. 1B).

The nature and age of the basement of these three volca-

nic domains are very different, changing from oceanic bas-

alts, dioritic intrusions and volcano-clastic deposits below

the Volcanic Front (Goosens & Rose 1973; Lebrat et al.

1987; Cosma et al. 1998; Reynaud et al. 1999; Lapierre

et al. 2000; Hughes & Pilatasig 2002; Luzieux et al. 2006)

to older and geochemically more mature continental forma-

tions consisting of metasedimentary, igneous and metamor-

phic rocks under the Main Arc (Aspden & Litherland 1992;

Aspden et al. 1992b; Litherland et al. 1994) (Fig. 1C).

South of 2�S, there is no active volcanism, but there are

impressive remnants of the Miocene volcanic activity, which

are mainly characterized by andesitic to rhyolitic products

cropping out as ignimbrites, lava flows and lava domes (La-

venu et al. 1992; Beate et al. 2001). This old and highly

eroded volcanic arc, known as the Saraguro arc, is the host

to several porphyry and epithermal ore deposits.

SAMPLING AND ANALYTICAL
METHODOLOGIES

On the basis of previous knowledge (Beate & Salgado

2005), several thermal springs, cold water sources and sur-

face waters (rivers) were sampled during a field campaign

carried out in January–March 2009. During this field cam-

paign, 49 sampling sites were visited from Tufiño, in

northern Ecuador at the border with Colombia, to Portov-

elo in central-southern Ecuador. Samples 50–57 were col-

lected in August 2009 and include Aguas Calientes

(northern Ecuador) and the El Mozo and Puyango sites in

the south of the country (Fig. 2). Details on the sites and

the related features are given in Table 1.

At every site, the outlet temperature, the electrical con-

ductivity and the pH of the waters were measured using an

ORION 250A+ conductivity metre and thermometer and

an ORION 250A+ pH-meter, respectively.

Water was sampled in different polyethylene bottles to

analyse its major components, silica and ammonium, and

its stable isotopes compositions. The samples for cations

were acidified with suprapur HNO3, whereas silica and

ammonium analysis were carried out on samples acidified

with suprapur HCl. Alkalinity was analysed in situ by titra-

tion with HCl 0.1 N, whereas major and minor elements

were determined in the laboratory using a Dionex 2000i

ion chromatograph with an accuracy of ±2%. A Dionex

CS-12 column was used for the cations (Li, Na, K, Mg

and Ca) and a Dionex AS4A-SC column for the anions

(F, Cl, Br, NO3 and SO4).

Bubbling gases were sampled using stopcock bottles and

Giggenbach bottles (filled with NaOH 4 M and pre-evacu-

ated in laboratory). Gas samples were analysed for the

chemical and isotopic composition (He, C and N).

Dissolved gases were sampled and analysed according to

the method described by Capasso & Inguaggiato (1998),

which is based on the equilibrium partition of gas species

between a liquid and a gas phase after the introduction of

a host gas (Ar) into the sample. Dissolved gases were

analysed using a Perkin Elmer 8500 gas-chromatograph

equipped with a 4-m-long Carbosieve S II column and Ar

as the carrier gas. He, H2, O2, N2 and CO2 were measured

by means of a TCD detector, while CH4 and CO were

determined through a FID detector coupled with a meth-

anizer. Analyses of the dissolved He isotopic composition

were performed using the methodology proposed by

Inguaggiato & Rizzo (2004).

The determination of the helium isotopic composition

was carried out on a static vacuum mass spectrometer (GVI-

Helix SFT) built for the simultaneous detection of 3He and
4He ion beam, to reduce the analytical error down to very

low values (an average of ±0.05 Ra). The 3He ⁄ 4He ratios

have been corrected for the atmospheric contamination on

the basis of their 4He ⁄ 20Ne ratios (Sano & Wakita 1985).

Values are reported as R ⁄ Ra values (where Ra is equal to

1.39 · 10)6). The d13C of total dissolved inorganic carbon

(TDIC) and the d18O of H2O of spring waters were analy-

sed by a Finnigan Delta Plus mass spectrometer. Carbon

isotopic values are expressed in d versus PDB, with an accu-

racy of 0.2&. Oxygen isotopic values are expressed in d ver-

sus V-SMOW with an accuracy of 0.2&.

RESULTS

Surface, cold and thermal waters

Physical parameters

The physical parameters of water samples show a wide

range of values. The outlet temperature varied between 7.5

and 74.5�C with the pH ranging between 4.60 and 9.18

and the electrical conductivity from 50 to 68 200 micro-

Siemens per cm (Table 1).

These values suggest the occurrence of water ⁄ rock and

gas ⁄ water interaction processes at different degrees. Rela-

tively lower pH (<6) values indicate a possible interaction

with acid gases, and high salinity might indicate prolonged

water–rock interaction and, in a few cases, evaporation pro-

cesses.

The relationship between the total dissolved salinity (TDS)

and the temperature of waters is shown in Fig. 3. Water sam-

ples can be divided into two different groups. The first,

consisting in low (<200 mg l)1) salinity waters (river sam-

ples) having low temperatures (around 10�C), is dominated

by a meteoric contribution. The second group is character-
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ized by relatively high outlet temperature (up to 74.5�C)

and TDS values up to 10 000 mg l)1, except for few sam-

ples like Salinas (54 633 mg l)1), San Vicente (14 229

mg l)1), Guapán (11 353 mg l)1) and Quilotoa (10 931

mg l)1), which seem to have suffered evaporation processes

(not shown in Fig. 3). The wide ranges of salinity and

temperature, shown by the water samples, suggest different

durations and degrees of mineral-dissolution in the waters.

Chemical data

Stable isotopes

dD and d18O ranges from )104 to )13 & and )13.65 to

4.69 & versus V-SMOW, respectively. Local meteoric

water-line has been reported with the data on Fig. 4A. For

a few samples from the Chacana-Papallacta area, a very

moderate isotopic shift of oxygen can be observed, sug-

gesting the occurrence of enhanced water–rock interac-

tions. SanVicente, Salinas and Guapán are likely affected by

evaporation processes. Interestingly, thermal sources associ-

ated with the Quaternary volcanism and those related to

the inactive part of the arc plot in two different groups,

with the former displaying lower d18O and dD values. In

Fig. 4B, the elevation of each sampling site versus dD val-

ues, as well as the theoretical line of vertical isotope gradi-

ent for Ecuador (computed on the basis of world water

isotope network rain-gauge) is reported. Only about 50%

of samples springs fall on the theoretical line show a
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relationship between the elevation of the springs and the

altitude of the feeding or recharge areas. Nevertheless,

Cununyacu (Chimborazo volcano), La Virgen, Santa Ana

and El Salado (Tungurahua volcano), El Tingo, El Pisque,

Ilaló and La Merced (Chacana Caldera), Guapante and Los

Elenes waters plot in correspondence to an altitude about

�1000 m higher than their elevation. For the former sam-

ples, this suggests that the summit areas of Chimborazo,

Tungurahua and Chacana volcanoes, whose altitudes are

6310, 5020 and 4000 m, respectively, are the recharge

areas of these springs. For Guapante and Los Elenes, the

location of the recharge areas is less clear. On the other

side, the few samples (i.e. San Vicente, Salinas, Guapán,

Quilotoa, El Mozo and Puyango) plotting to the right of

the theoretical vertical isotope gradient are likely affected

by sub-aerial evaporation.

Major elements

Major ions (Li+, Na+, K+, Mg2+, Ca2+, F), Cl), Br),

NO2�
3 , SO2�

4 , HCO�3 ), SiO2 and NH4
+, were determined

in the water samples and the analytical data are reported in

Table 1.

As shown in the Langelier–Ludwig diagram (Fig. 5),

sampled waters pertain to four different compositional fam-

ilies.

(1) Bicarbonate alkaline-earth waters. These waters are

mainly the river samples, characterized by a very

low TDS values (100–200 mg l)1). They mostly repre-

sent the meteoric recharge of the investigated geother-

mal systems. Some waters (Nono, Pululahua, La

Merced (Chacana), Tesalia, El Salitre, Hummocks and

Guapante,) with temperatures ranging 10.7–32.5�C
also belong to this family, but their salinity is a little

bit higher (400–3500 mg l)1)

(2) Bicarbonate-alkaline-waters (Chacana [Ilaló, Oyacachi,

Lisco, Guachalá], Pitzantzi, Guayllabamba and Palmira)

are characterized by a medium to high salinity (up to

4000 mg l)1) and by high total dissolved carbon, prob-

ably because of dissolution of CO2 (peripheral waters).

(3) Chlorine-sulphate-alkaline waters including most of the

samples of Chacana caldera are characterized by high

salinity (up to 5000 mg l)1) and Salinas samples whose

salinity is around 55 000 mg l)1.

(4) Chlorine-sulphate-alkaline-earth waters characterized

by medium (Tungurahua samples [La Virgen, El Sala-

do, Santa Ana], Los Elenes and Cuicocha) to high (up

to 14 000 mg l)1; San Vicente) TDS values.

Interestingly, no water geochemical characteristic differ-

entiates the thermal waters related to the Volcanic Front

volcanoes (Chiles, Chachimbiro, Cuicocha, Pululahua,

Pichincha, Atacazo, Quilotoa, Chimborazo) or to the Main

Arc volcanoes (Chacana, Cotopaxi, Tungurahua), despite

their different basement terranes.

Dissolved and bubbling gases

Several thermal waters are associated with gas phases show-

ing strong bubbling gases that are CO2-rich and character-

ized by a relatively high content of helium (up to 67 p.p.m

vol; Guachalá water located in Chacana area).

The chemical composition of both dissolved and

bubbling gases (Tables 2 and 3) plotted on the ternary

Nono
Palmira

Chacana-Papallacta
Tesalia
El Salitre
Cotopaxi
rivers

Cununyacu
Tungurahua Los Elenes

Guayllabamba
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Chacana-Cachiyacu
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Fig. 3. Total dissolved salinity versus temperature. The meteoric recharge waters field is characterized by both low salinity and low temperature. The geother-

mal waters are characterized by high temperatures up to 74.5�C and salinity ranging between 1000 and 10000 mg l)1.
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diagram CO2-O2-N2 shows that all the samples related to

the Quaternary arc fall close to the CO2-corner. For Cha-

cana area, a mixing with an atmospheric end-member

seems evident. These samples show an alignment with

O2 ⁄ N2 ratio lower than that of air saturated water (ASW)

highlighting an excess of nonatmospheric nitrogen and ⁄ or

a consumption of oxygen (Fig. 6). This seems more evi-

dent for samples from Portovelo and San Vicente that are

located very close to the N2 corner.

Carbon dioxide and helium concentrations dissolved in

the thermal waters are significantly higher than those of

waters in equilibrium with the atmosphere (up to three

orders of magnitude respect to ASW), suggesting contribu-

tion of CO2 and helium from volatile-rich fluids.

To better define the origin of these gases, the isotope

composition of C and He both on dissolved and bub-

bling gases was analysed. The carbon isotopes of CO2

and the d13CTDIC of total dissolved carbon species range
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between )1.75 and )10.5 & PDB (Table 3), suggesting

a deep origin for these fluids, while few samples show

very negative values around )30 & PDB (Table 1)

suggesting an organic origin and ⁄ or strong fractionation

processes.

The helium isotope composition ranges between 0.1 and

7 R ⁄ Ra (Ra = 1.39*10)6). The R ⁄ Ra values versus He ⁄ Ne

ratio were plotted in Fig. 7 together with the values of

mid-ocean ridge basalts (MORB), crust and air added for

reference. A distribution in two different groups can be

observed: the first one has values >2 R ⁄ Ra suggesting a

variable contribution of mantle He (ranging from 24 to

89%); the second one has values R ⁄ Ra <1 indicating that

the crustal component is, in some cases, largely predomi-

nant (ranging from 33 to 96%). Tungurahua, Guay-

llabamba, Pululahua, Tesalia, Cuicocha, Aguas Calientes

and several fluid samples from the Chacana Caldera come

from the first group. It is worth noting that such fluids dis-

charge is related to Quaternary active volcanic systems. In

contrast, Jesús Marı́a, Portovelo and San Vicente fluid dis-

charges (all located south of 2�S) come from the second

group. Jesús Marı́a is located at the boundary between the

Western Cordillera foothills and the Coastal plain, and

Portovelo and El Mozo are related to an old hydrothermal

mineralizing system; San Vicente, given its proximity to

the trench, might plausibly be related to fluids expelled

from subducted sediments.

DISCUSSION

The isotopic composition of waters reveals a clear meteoric

origin for all the sampled cold and thermal springs

(Fig. 4A). The chemical composition is the result of water–

rock interaction that occurs at different extents, as shown

by the wide range of TDS values (Fig. 3).

The isotopic composition of TDIC is the result of the

following chemical and isotope mass balance, where M

stands for molarity, and the activity of CO3 is considered

negligible at pH <8.3:

�13CTDIC¼ ð�13CCO2aq�MCO2aqþ �13CHCO3
�MHCO3

Þ=MTDIC

ð1Þ
MTDIC¼MCO2aqþMHCO3

ð2Þ

By using the enrichment factors ea and eb, (Mook et al.,

1974; Deines et al., 1974)

"a¼�13CHCO3
��13CCO2g¼ 9552=T K�24:1 ð3Þ

"b¼�13CCO2aq��13CCO2g¼ �0:91þ 0:0063 � 106=T
2

K ð4Þ

Equation 1 can be written as follows:

�13CCO2g¼�13CTDIC

�ð"b�MCO2aq=MTDICþ"a�MHCO3
=MTDICÞ

ð5Þ

Cuicocha

N
a+

K

I

IIIII

IV

HCO3+CO3

C
a + M

g
Cl + SO4

0

25

50 0

25

50
05520

02550

Tungurahua
volcanic system

Meteoric
recharge

Chacana area
CO2 dissolution

Fig. 5. Langelier–Ludwig diagram. Four families

of samples have been identified on the basis of

the chemical composition of thermal and cold

waters. (i) Bicarbonate earth-alkaline waters

characterized by low salinity and representative

of meteoric recharge systems; (ii) Cl-SO4 alkaline

waters characterized by high salinity and repre-

sentative of geothermal systems areas; (iii) bicar-

bonate alkaline waters characterized by high

total dissolved carbon species and representative

of peripheral waters; (iv) Cl-SO4 earth-alkaline

waters characterized by medium salinity and rep-

resentative of Tungurahua area samples and by

SanVicente thermal water characterized by high

salinity around 19 000 mg l)1. Symbols as on

Fig. 4, except for Cuicocha which is located at

the base of the diagram.
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Next, the isotope composition of CO2 gas in equilibrium

with the aquifers considering the dissolved CO2 and

HCO3 amounts at the temperature of aquifer using the

eq. 5 was calculated (Inguaggiato et al. 2000, 2005). The

obtained values are reported in Table 1.

Figure 8 shows the computed isotopic composition of

CO2 gas and the �13CCO2
of bubbling gases both versus

the total C (HCO3 + CO2diss). The plotted data show a

wide variability for the amount of total carbon covering

three orders of magnitude (from <1 meq l)1 to more than

100 meq l)1). This wide variability reflects the progress of

gas–water interaction processes and could be because of

adding ⁄ removal CO2 processes in the aquifers (Inguaggia-

to et al. 2000, 2005). Conversely, the carbon isotope com-

position shows a narrow variability around a magmatic

signature ()5 to )8&) suggesting a common deep mag-

matic origin for the CO2 interacting with the thermal

waters even if they display different degrees of gas–water

interaction.

Only three thermal water samples from the Papallacta

area and one of the Papallacta river show very negative val-

ues (around )30&) with a lower amount of total dissolved

carbon between 1 and 4 meq l)1. These negative values

suggest an organic matter origin for the carbon and ⁄ or

kinetic fractionation processes because of carbon removal

in response to carbonate precipitation. In fact, in these

thermal waters, lower concentrations of dissolved carbon

were measured and the presence of travertine deposits is

evident in this area.

The isotope composition of He in the bubbling gases was

analysed to constrain the origin of this gas. The carbon iso-

tope composition versus R ⁄ Ra corrected (where Ra is equal

to 1.39 *10)6) is plotted in Fig. 9. The distribution of data

confirms a mantle-like signature for these fluids; in fact, the

carbon isotope ratios of bubbling-CO2 range between )5

and )10&, and almost all of the bubbling samples have He

isotope composition ranging between 2 and 7 R ⁄ Ra.

The isotope composition of He versus the latitude

of samples has been plotted in Fig. 10 to investigate a

possible relationship between the origin of fluids and their

location on the Ecuadorian Arc. MORB, crust and air are

plotted as references. All the samples located to the north

of 2�S, in the active Quaternary volcanic arc, display He

isotope ratios from 2 to 7 R ⁄ Ra, while the samples below

Table 2 Chemical composition of dissolved gases. Values are expressed in cc per litre STP.

Sigla He H2 O2 N2 CO CH4 CO2

E1 1.92E-03 3.83E-02 5.30 23.14 8.38E-02 6.33

E2 1.98E-03 7.48E-04 2.27 16.53 2.44E-05 1.61E-03 12.82

E3 8.76E-04 0.00E+00 4.10 18.19 7.62E-05 3.04E-03 3.10

E4 5.28E-04 2.53E-02 1.40 4.90 4.56E-04 1.82E-02 125.21

E5 5.85 13.16 9.31E-05 1.04

E7 5.95E-04 1.10E-03 0.02 3.32 1.43E-04 4.84E-03 194.17

E8 0.04 7.80 3.67E-05 3.05E-03 285.22

E9 5.59E-04 0.05 6.41 1.48E-05 9.65E-03 83.01

E10 1.91E-03 5.11E-04 0.05 13.69 2.70E-03 92.65

E11 1.93E-03 1.69 22.98 1.36E-04 6.08E-03 174.45

E12 1.70E-03 0.62 21.95 2.75E-05 2.45E-02 95.59

E13 3.11E-04 3.19 14.66 5.17E-04 119.95

E14 2.93E-03 1.87 13.52 7.06E-03 256.91

E19 3.34E-04 0.02 6.34 2.75E-05 1.85E-02 359.97

E20 1.44E-04 2.59E-03 0.11 6.96 3.13E-03 222.10

E21 2.36E-04 0.00E+00 0.07 2.96 3.31E-01 564.61

E22 1.74E-04 0.00E+00 0.02 3.34 6.74E-02 582.19

E23 1.81E-04 0.00E+00 0.15 8.75 2.50E-04 476.45

E26 2.17E-04 5.90E-03 0.06 5.88 3.12E-04 226.05

E27 1.42E-02 0.64 5.78 1.77E-04 336.40

E28 3.31E-04 1.38E-03 0.02 10.33 2.80E-02 0.56

E29 2.45E-02 0.04 4.61 6.91E-02 283.27

E31 1.25E-04 2.70E-03 0.45 13.37 8.62E-04 14.95

E32 1.48E-04 2.70E-01 0.04 4.56 4.85E-03 272.10

E33 1.88E-04 3.06E-01 0.77 5.12 1.07E-02 104.26

E34 3.81E-04 1.36E-01 0.04 10.38 1.80E-02 0.89

E36 5.43E-04 5.18E-03 0.02 16.57 2.10E-02 0.67

E37 3.75E-02 0.06 8.69 9.52E-04 1.24

E43 1.90E-04 7.96E-01 0.06 6.48 2.66E-03 37.92

E46 0.00E+00 0.07 7.18 2.52E-02 39.00

E48 1.40E-04 0.00E+00 3.73 10.68 1.30E-04 113.96

E50 2.49E-03 0.06 3.71 1.56E-03 455.40
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this latitude, where no active volcanism has been recog-

nized because the Miocene, show a more crustal-like com-

ponent with lower He-isotopes ratios (0.1–1 R ⁄ Ra).

To better clarify the origin of these gases and the pro-

cesses that they underwent during their ascent towards the

surface, the C ⁄ 3He ratio has plotted against the isotopic

composition of He, including the fields of MORB, hot

spots, carbonate sediments and the continental crust

(Fig. 11; Marty & Jambon 1987; Varekamp et al. 1992;

Sano & Marty 1995; Hilton et al. 1993). The bubbling

gases show a wide range for log C ⁄ 3He between 6.5 and

12.5, and with R ⁄ Ra values between 0.1 and 7. The values

displayed by carbon and helium in samples taken in Chacana

area are consistent with deep mantle–related fluids. CO2

addition processes can be invoked for Tungurahua

volcanoes fluids (E25–E27). A contamination of carbon

addition related to continental crust and ⁄ or carbonate sedi-

ments is evident for the San Vicente area, which shows

higher log C ⁄ 3He and lower R ⁄ Ra values (12 and 0.1,

respectively). Owing to the proximity of this spring to the

trench, the addition of carbon by carbonate sediments is

likely. The relatively low values of log C ⁄ 3He (6.5) with

R ⁄ Ra values of 0.9 for Portovelo indicate a more crustal-

like source. This helium contains almost 90% of crustal

helium and approximately 10% of MORB-type helium,

supporting both a removing carbon process and, more

likely, a crust-like helium contribution for this sample.

Moreover, in the CO2-N2-CH4 ternary diagram (Fig. 12),

three different groups of gases are clustered, corresponding

to the Tungurahua, Portovelo and San Vicente systems,

CO2, N2 and CH4 dominated, respectively.

Finally, to corroborate the origin and the processes

undergone by these fluids, the isotopic composition of

nitrogen was measured on the Tungurahua and Portovelo

samples, and the carbon isotope composition of CH4 in

San Vicente sample. The main potential sources of nitro-

gen in volcanic and hydrothermal fluids are (i) the atmo-

sphere; (ii) the upper mantle, including both unaltered

subducting oceanic crust and mantle wedge; (iii) the lower

mantle; and (iv) the sediments, including subducted oce-

anic sediments and the continental crust. Each of these res-

ervoirs has distinct d15N values. Atmospheric nitrogen has

been conventionally used as an international reference

(d15N = 0&). The upper mantle, investigated through

analyses on MORB and diamonds, revealed the presence of

a light nitrogen component with typical d15N values in the

range )3& to )8& (Cartigny 1997; Marty and Hubert,

1997). Recently, anomalously negative d15N values of

)15& have been inferred for the lower mantle beneath the

Indonesian plate (Mohapatra & Murty 2004; Clor et al.

Table 3 Chemical composition of bubbling gases. The values of O2, N2 and CO2 are expressed in % vol, while the values of H2, CO and CH4 are expressed

in p.p.m vol. The isotopic composition of CO2 gas is expressed in & PDB standard.

Sample H2 p.p.mVol O2 %Vol N2 % Vol CO p.p.mVol CH4 p.p.mVol CO2 %Vol R ⁄ Ra He ⁄ Ne [He] corr [Ne] corr R ⁄ Ra c d 13C(CO2)

E4 0.89 15.82 1.30 1446 84.04 7.09 59.36 136.52 2.30 7.12 )6.79

E8 0.12 37.66 0.50 126 61.88 4.08 11.80 67.84 5.75 4.16 )10.5

E9 0.54 0.55 1.30 103 98.40 0.67 0.50 0.75 )5.41

E14 6.01 3.44 0.00 0.00 6.46

E15 4.21 16.83 4.00 3 77.89 3.91 4.28 0.54 0.13 4.15 )5.13

E17 14.82 59.46 1.10 18 25.83 2.27 1.51 0.61 0.40 2.60 )6.79

E20 0.08 0.22 0.30 2140 98.25 2.84 1.33 0.26 0.19 3.42 )5.03

E21 1.12 2 95.71 3.54 6.94 1.45 0.21 3.66 )3.84

E22 2.45 9.74 0.40 377 87.25 1.96 0.44 0.23 )2.93

E23 1.74 13.14 0.60 2 82.79 6.62 8.62 5.58 0.65 6.83 )7.79

E25 0.07 0.18 0.20 16 100.00 4.84 5.08 0.73 0.14 5.10 )7.8

E26 0.18 1.01 6.00 54 98.24 0.35 2.92 8.25 )6.84

E27 0.10 0.24 4 99.74 3.64 1.95 0.43 0.22 4.16 )7.11

E29 0.61 4.21 0.70 1 93.62 2.02 6.58 4.30 0.65 2.07 )10.19

E32 6 0.20 0.61 0.70 330 100.00 0.74 2.62 0.91 0.35 0.70 )9.94

E34 0.17 95.90 0.40 3225 0.16 0.94 97.61 542.37 5.56 0.93

E36 0.45 1.63 0.00 0.00 0.34

E37 7 0.10 0.85 0.30 981500 0.02 0.11 12.59 6.82 0.54 0.08

E38 16 0.57 2.25 4.40 0 93.44 0.30 3.45 11.47 )1.75

E39 0.12 1.25 5.00 17 97.34 )2.47

E42 24 0.03 2.84 21.00 12 93.24 0.33 3.97 12.09 )3.17

E43 0.43 0.00 0.00

E45 4.23 59.26 4.20 873 37.43 5.73 3.18 8.47 2.66 6.26 )3.94

E49 0.42 3.08 79.00 8 96.33 1.87 1.72 0.15 0.09 2.07 )4.94

E50 0.19 1.13 5.30 16 97.61 3.03 2.04 0.25 0.12 3.41 )6.07

E52 0.67 0.51 5.82 11.49 0.11

E54 0.76 0.49 3.88 7.94 0.33
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2005) and for the Nicaraguan volcanic front (Elkins et al.

2006). Moreover, Inguaggiato et al. (2009) have recently

reported extremely low d15N values of )16 and )15 & for

the excess N2 in the volcanic gas samples, respectively,

from Cabo Verde islands and Iceland. In contrast, typical

d15N values for a sedimentary component are generally

enriched compared to those of the atmosphere (d15N =

+7&, Sadofsky and Bebout, 2004; Sano et al. 2001; Min-

gran and Brauer, 2001).

Nitrogen isotope compositions were measured on only

two samples, Portovelo and Tungurahua which, respec-

tively, represent the nitrogen- and CO2-dominant samples.

The nitrogen data have been corrected for atmospheric

contamination on the basis of the following equations

(Inguaggiato et al. 2004b, 2006):

�15Ncorr ¼ ð�15Nmeas=N2excess ð%ÞÞ � 100 ð6Þ

N2excess ð%Þ ¼
N2observed

�N2atmospheric

N2observed

� 100 ð7Þ

N2atmospheric
¼ 36Arobserved �

N2

36Ar

� �
ASW

ð8Þ

The d15N values corrected for air contamination have

been plotted versus R ⁄ Ra in Fig. 13, together with the

field of upper mantle and crust as references. The distribu-

tion of samples highlights a different origin for both sys-

tems, d15N = )5&, 5 R ⁄ Ra and d15N = +5&, 0.9 R ⁄ Ra,

respectively, for Tungurahua and Portovelo. These values

are compatible with the geodynamic setting of the Ecuado-

rian volcanoes, in fact Tungurahua volcano fluids, charac-

terized by significant He-mantle signature (around 60%), is

located in the recent active volcanism area (above 2�S) and

has been active since 1999, while the fluid manifestation of

Portovelo, characterized by a prevalent He-sedimentary-

crustal signature (around 90%), is located in the ancient

Miocene volcanic area (below 2�S).

Finally, the isotope composition of carbon of CH4 in

the San Vicente sample, characterized by methane-rich

fluids (98.1% Vol), shows a value of )39 & versus

Deep CO2
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isotope composition of TDIC and the �13rmCCO2

of bubbling gases both versus total amount of

dissolved carbon species (HCO3 + dissolved

CO2). The wide variability showed for the total

carbon amount reflects probably adding ⁄ remov-

ing CO2 processes in the aquifers. The carbon

isotope composition shows a narrow variability

()5 to )8&) indicating a common origin for the

dissolved carbon in thermal waters. The very

negative values (around )30&), with lower

amount of total dissolved carbon, could indicate

a different origin (organic) or be related to

kinetic fractionation processes.
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PDB. This value suggests a thermogenic origin for these

fluids.

CONCLUSIONS

The first characterization of hydrothermal fluids related to

volcanic systems of the Volcanic Ecuadorian chains high-

lights the key role of volatiles.

The geochemical composition of the sampled thermal

waters is the result of strong water–rock interaction pro-

cesses that drive the dissolution of minerals on the basis of

the physico-chemical conditions of aquifers (pH, T, P,

redox conditions) and show, on the basis of deuterium and

oxygen isotopes composition, a clear meteoric origin.

Interestingly, no clear water geochemical differences can

be discerned between the hydrothermal systems linked to

MORB
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a very narrow range confirming the common ori-

gin of carbon for these fluids. The R ⁄ Ra values

from 2 up to 7 for the bubbling free gases are

indicative of a magmatic origin for the majority

of samples.
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the Volcanic Front volcanoes or the Main Arc ones, despite

their different basements.

These fluids highlight a MORB-like isotopic signature of

CO2 at R ⁄ Ra > 2. The helium isotope composition ranges

from 0.1 to 7.1 R ⁄ Ra., This allowed the division of the

samples in two distinct groups, above 2 and below 1 R ⁄ Ra,

respectively. These two groups of samples correspond to

the geographical limit of the active volcanic arc in Ecuador.

The springs group with higher R ⁄ Ra values lies to the

north of 2�S (active volcanism), and the springs group with

lower values lies to the south of 2�S (extinct volcanism).

The nitrogen isotope compositions of discharged fluids

corroborate the different origin of these two groups of flu-

ids ()5 and +5 d15N, respectively for Tungurahua and Por-

tovelo samples) with a clear geographic distribution, which
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highlights the powerful tool of the isotopes to discriminate

different sources.

On the basis of this preliminary fluid characterization

exercise and considering the strong gas–water interaction

between deep magmatic fluids and thermal waters associ-

ated to volcanic systems, it is possible to identify sensible

sites for starting a systematic geochemical monitoring

activity and complementary research for geothermal energy

exploration.
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