Skip to main content
Log in

Remediation experiment of Ecuadorian acid mine drainage: geochemical models of dissolved species and secondary minerals saturation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Acid mine drainage is one of the main environmental hazards to ecosystems worldwide and it is directly related to mining activities. In Ecuador, such acidic-metallic waters are drained to rivers without treatment. In this research, we tested a laboratory combined (Ca-Mg) Dispersed Alkaline Substrate (DAS) system as an alternative to remediate acid drainage from the Zaruma-Portovelo gold mining site, at El Oro, Ecuador. The system worked at low and high flow hydraulic rates during a period of 8 months, without signs of saturation.. Analysis of physico-chemical parameters and water composition (ICP-OES, ICP-MS) demonstrated that treatment effectively increased water pH and promoted the retention of about 80% of Fe, Al, Mn and Cu. Under acid conditions As, Cr and Pb concentrations decreased with Fe and possible precipitation of jarosite and schwertmannite. However, the homogeneous depletion of Cr at pH above 6 could be related to ferrihydrite or directly with Cr (OH)3 precipitation. After DAS-Ca, sulphate, phosphate and rare earth elements (REE) concentrations decreased to 1912, 0.85 and 0.07 mg/L respectively, while DAS-Mg contributed to form a complex model of minor carbonate and phosphate phases as main sink of REE. DAS-Mg also promoted the retention of most divalent metals at pH values over seven. Thus, this low cost treatment could avoid environmental pollution and international conflicts. Anyway, further investigations are needed to obtain higher Zn retention values.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Acero P, Ayora C, Torrento C, Nieto JM (2006) The behaviour of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite. Geochim Cosmochim Acta 70:4130–4139

    CAS  Google Scholar 

  • Alonso E, Sherman AM, Wallington TJ, Everson MP, Field FR, Roth R, Kirchain RE (2012) Evaluating rare earth element availability: a case with revolutionary demand from clean technologies. Environ Sci Technol 46:3406–3414

    CAS  Google Scholar 

  • APHA, AWWA, WEF 4500-SO4 2− E (2012a) Turbidimetric Method [ed] Eugene Rice, et al Standard Methods for the Examination of Water and Wastewater. 22nd Washington, DC: American Public Health Association

  • APHA, AWWA, WEF 4500-P E (2012b) Ascorbic Acid Method [ed] E Rice, et al Standard Methods for the Examination of Water and Wastewater. 22nd Washington, DC: American Public Health Association

  • Åström ME, Österholm P, Gustafsson JP, Nystrand M, Peltola P, Nordmyr L, Boman A (2012) Attenuation of rare earth elements in a boreal estuary. Geochim Cosmochim Acta 96:105–119

    Google Scholar 

  • Ayala D, López F (2014) Impacto de las actividades mineras por elementos potencialmente tóxicos (EPT) en la zona sur del Ecuador. IX Congreso de Ciencia y Tecnología ESPE Volume 9 pp 98–105

  • Ayala D, Delgado J, López F, Boski T, Calderón E (2015) Preliminary evaluation of a passive treatment for mine tailings in Portovelo, El Oro, Ecuador. 27th international applied geochemistry symposium. https://www.appliedgeochemists.org/images/stories/IAGS_2015/Abstracts/27th%20IAGS_Ayala%20et%20al_Passive%20treatment%20for%20mine%20tailings%20Portovelo%20Equador.pdf

  • Ayora C, Macías F, Torres E, Lozano A, Carrero S, Nieto JM, Pérez-López R, Férnandez-Martínez A, Castillo-Michel H (2016) Recovery of rare earth elements and yttrium from passive-remediation systems of acid mine drainage. Environ Sci Technol 50(15):8255–8262

    CAS  Google Scholar 

  • Baes CF Jr, Mesmer RE (1976) The hydrolysis of cations. Wiley, New York

    Google Scholar 

  • Ball JW, Nordstrom DK (1991) User’s manual for WATEQ4F, with revised thermodynamic data base and test cases calculating speciation of major, trace and redox elements in natural waters. US Geological Survey Open- File Report, 91–183

  • Bau M (1999) Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: experimental evidence for Ce oxidation, Y-ho fractionation, and lanthanide tetrad effect. Geochim Cosmochim Acta 63:67–77

    CAS  Google Scholar 

  • Betancourt O, Narváez A, Roulet M (2005) Small-scale gold mining in the Puyango River basin, southern Ecuador: a study of environmental impacts and human exposures. EcoHealth 2:23–332

    Google Scholar 

  • Bigham JM, Cravotta CA (2016) Acid mine drainage. In: Lal R (ed) Encyclopedia of soil science (3rd). CRC Press, Taylor and Francis LLC, pp 6–10. https://doi.org/10.1081/E-ESS-120001582

  • Bigham JM, Schwertmann SJ, Traina S, Winland RL, Wolf M (1996) Schwertmannite and the chemical modelling of iron in acid sulfate waters. Geochim Cosmochim Acta 60:2111–2121

    CAS  Google Scholar 

  • Cabrera G, Pérez R, Gómez JM, Abalos A, Cantero D (2006) Toxic effects of dissolved heavy metals on Desulfovibrio vulgaris and Desulfovibrio sp strains. J Hazard Mater 135:40–46

    CAS  Google Scholar 

  • Caraballo MA, Rötting TS, Macías F, Nieto JM, Ayora C (2009a) Field multi-step calcite and MgO passive system to treat acid mine drainage with high metal concentration. Appl Geochem 24:301–311

    Google Scholar 

  • Caraballo MA, Rötting TS, Nieto JM, Ayora C (2009b) Sequential extraction and DXRD applicability to poorly crystalline Fe- and Al-phase characterization from an acid mine water passive remediation system. Am Mineral 94:1029–1038

    CAS  Google Scholar 

  • Caraballo MA, Macías F, Castillo J, Quispe D, Nieto JM, Ayora C (2011) Hydrochemical performance and mineralogical evolution of a dispersed alkaline substrate (DAS) remediating the highly polluted acid mine drainage in the full scale passive treatment of Mina Esperanza (SW, Spain). Am Mineral 96:1270–1277

    CAS  Google Scholar 

  • Carbone C, Dinelli E, Marescotti P, Gasparotto G, Lucchetti G (2013) The role of AMD secondary minerals in controlling environmental pollution: indications from bulk leaching tests. J Geochem Explor 132:188–200

    CAS  Google Scholar 

  • Cortina JL, Lagreca I, De Pablo J, Cama J, Ayora C (2003) Passive in situ remediation of metal-polluted water with caustic magnesia: evidence from column experiments. Environ Sci Technol 7:1971–1977

    Google Scholar 

  • Delgado J, Sarmiento A, Condesso De Melo M, Nieto JM (2009) Environmental impact of mining activitiesin the southern sector of the Guadiana Basin (SW of the Iberian Peninsula). Water Air Soil Pollut 199:323–341

    CAS  Google Scholar 

  • Delgado J, Pérez-López R, Galván L, Nieto JM, Boski T (2012) Enrichment of rare earth elements as environmental tracers of contamination by acid mine drainage in salt marshes: a new perspective. Mar Pollut Bull 64:1799–1808

    CAS  Google Scholar 

  • Delgado J, Ayala D, Páez HS (2018) Sistema de tratamiento para mejorar la calidad de aguas de drenaje de pasivos ambientales mineros en la cuenca del Río Puyango (Ecuador). Geogaceta 64:63–66 ISSN: 0213-683X

    Google Scholar 

  • FAO - Food and Agriculture Organization of the United Nations (1985) Irrigation and drainage paper 29, rev 1. Water quality for agriculture food and agriculture Organization of the United Nations 1994 (reprint). Ayers RS and Westcot DW. Rome. ISBN: 9251022631

  • Fernández-Caliani JC, Barba-Brioso C, De la Rosa JD (2009) Mobility and speciation of rare earth elements in acid mine soils and geochemical implications for river waters in the southwestern Iberian margin. Geoderma 149:393–401

    Google Scholar 

  • Ferreira da Silva E, Bobos I, Matos JX, Patinha C, Reis AP, Cardoso-Fonseca E (2009) Mineralogy and geochemistry of trace metals and REE in volcanic massive sulfide host rocks, stream sediments, stream waters and acid mine drainage from the Lousal mine area (Iberian Pyrite Belt, Portugal). Appl Geochem 24:383–401

    CAS  Google Scholar 

  • Gammons CH, Wood SA, Pedrozo F, Varekamp JC, Nelson BJ, Shope CL, Baffico G (2005) Hydrogeochemistry and rare earth element behaviour in a volcanically acidified watershed in Patagonia, Argentina. Chem Geol 222:249–267

    CAS  Google Scholar 

  • Gibert O, de Pablo J, Cortina JL, Ayora C (2005) Sorption studies of Zn (II) and cu (II) onto vegetal compost used on reactive mixtures for in situ treatment of acid mine drainage. Water Res 39:827–2838

    Google Scholar 

  • Guimaraẽs JRD, Betancourt O, Rodriguez-Miranda M, Barriga R, Cueva E, Betancourt S (2011) Long-range effect of cianyde on mercury methylation in a gold mining area in southern Ecuador. Sci Total Environ 409:5026–5033

    Google Scholar 

  • Hammarstrom JM, Seal RR II, Meierb AL, Kornfeldc JM (2005) Secondary sulfate minerals associated with acid drainage in the eastern US: recycling of metals and acidity in surficial environments. Chem Geol 215:407–431

    CAS  Google Scholar 

  • Jambor JL, Nordstrom DK, Alpers CN (2000) Metal-sulfate salts from sulfide mineral oxidation. Rev Mineral Geochem 40:303–350

    CAS  Google Scholar 

  • Jensen DL, Boddum JK, Tjell JC, Christensen TH (2002) The solubility of rhodochrosite (MnCO3) and siderite (FeCO3) in anaerobic aquatic environments. Appl Geochem 17:503–511

    CAS  Google Scholar 

  • Kirby CS, Cravotta CA (2005) Net alkalinity and net acidity: I theoretical considerations. Appl Geochem 20:1920–1940

    CAS  Google Scholar 

  • Leybourne MI, Johannesson KH (2008) Rare earth elements (REE) and yttrium in stream waters, stream sediments, and Fe–Mn oxyhydroxides: fractionation, speciation, and controls over REE+Y patterns in the surface environment. Geochim Cosmochim Acta 72:5962–5983

    CAS  Google Scholar 

  • López-González N, Borrego J, Carro B, Grande JA, De la Torre ML, Valente T (2012) Rare-earth-element fractionation patterns in estuarine sediments as a consequence of acid mine drainage: a case study in SW Spain. Bol Geol Min 123:55–64

    Google Scholar 

  • Macías F, Caraballo MA, Nieto JM, Rötting TS, Ayora C (2012) Natural pretreatment and passive remediation of highly polluted acid mine drainage. J Environ Manag 104:93–100

    Google Scholar 

  • Macías F, Pérez-López R, Caraballo MA, Ayora C, Nieto JM (2017) Management strategies and valorization for waste sludge from active treatment of extremely metal-polluted acid mine drainage: a contribution for sustainable mining. J Clean Prod 141:1057–1066

    Google Scholar 

  • MAE - Ministerio de Ambiente República Del Ecuador (2000). Comisión de Medio Ambiente, Higiene y Recursos Naturales Registro Oficial No 74, 10/05/2000 Anexo Valores Máximos Permisibles de los Indicadores de Contaminación y Parámetros de Interés Sanitario para Descargas Líquidas

  • MAE - Ministerio de Ambiente República Del Ecuador (2003). Texto unificado de la legislación ambiental secundaria (TULSMA, Libro VI) Reglamento a la Ley de Gestión ambiental para la prevención y control de la contaminación ambiental MAE, Quito, pp 319

  • Marescotti P, Carbone C, Comodi P, Frondini F, Lucchetti G (2012) Mineralogical and chemical evolution of ochreous precipitates from the Libiola Fe–cu-sulfide mine (eastern Liguria, Italy). Appl Geochem 27:577–587

    CAS  Google Scholar 

  • Martell AE, Smith RM, Motekaitis R (2004) NIST critically selected stability constants of metal complexes. NIST standard reference Data Base 46 version 8.0, Gaithersburg

  • Nordstrom DK, Alpers CN (1999) Geochemistry of acid mine waters. In: Plumlee GS, Logson MJ (eds) The environmental geochemistry of mine waters 6A. Rev econ Geol. Littleton, Society of Economic Geology, pp 133–160

    Google Scholar 

  • Olías M, Ceron JC, Fernández I, De la Rosa J (2005) Distribution of rare earth elements in an alluvial aquifer affected by acid mine drainage: the Guadiamar aquifer (SW Spain). Environ Pollut 135:53–64

    Google Scholar 

  • Papassiopi N, Zaharia C, Xenidis A, Adam K, Liakopoulos A, Romaidis I (2014) Assessment of contaminants transport in a watershed affected by acid mine drainage, by coupling hydrological and geochemical modeling tools. Miner Eng 64:78–91

    CAS  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User's guide to PHREEQC (version 2)—a computer program for speciation, batch reaction, one-dimensional transport, and inverse geochemical calculations. USGS water-resources investigations report: 99–4259. US Geological Survey, Denver, p 312

    Google Scholar 

  • Pazmiño I (2013) Tipología de las plantas de beneficio de minerales en el Distrito Minero Zaruma-Portovelo, Provincia El Oro. Instituto Nacional de Investigación Geológico Minero Metalúrgico, Quito

    Google Scholar 

  • Pérez-López R, Cama J, Nieto JM, Ayora C (2007) The iron-coating role on the oxidation kinetics of a pyritic sludge doped with fly ash. Geochim Cosmochim Acta 71:1921–1934

    Google Scholar 

  • Pérez-López R, Delgado J, Nieto JM, Márquez-García B (2010) Rare earth element geochemistry of sulphide weathering in the São Domingos mine area (Iberian Pyrite Belt): a proxy for fluid-rock interaction and ancient mining pollution. Chem Geol 276:29–40

    Google Scholar 

  • PRODEMINCA (1999) Monitoreo ambiental de las áreas mineras en el sur del Ecuador 1996–1998. Proyecto de Desarrollo Minero y Control Ambiental, Swedisch Environmental Systems, Quito, 154 pp

  • Prudêncio MI, Valente T, Marques R, Sequeira-Braga MA, Pamplona J (2015) Geochemistry of rare earth elements in a passive treatment system built for acid mine drainage remediation. Chemosphere 138:691–700

    Google Scholar 

  • Puig-Domènech I (2010) MEDUSA (make equilibrium diagrams using sophisticated algorithms) windows interface to the MS-DOS versions of INPUT, SED and PREDOM (FORTRAN programs drawing chemical equilibrium diagrams) Vers. 6 Dec 2010. Royal Institute of Technology, Stockholm

  • Rötting TS, Cama J, Ayora C, Cortina JL, De Pablo J (2006) Use of caustic magnesia to remove cadmium, nickel, and cobalt from water in passive treatment systems: column experiments. Environ Sci Technol 40:6438–6443

    Google Scholar 

  • Rötting TS, Ayora C, Carrera J (2008a) Improved passive treatment of high Zn and Mn concentrations using caustic magnesia (MgO): particle size effects. Environ Sci Technol 2:9370–9377

    Google Scholar 

  • Rötting TS, Caraballo MA, Serrano JA, Ayora C, Carrera J (2008b) Field application of calcite dispersed alkaline substrate (calcite-DAS) for passive treatment of acid mine drainage with high Al and metal concentrations. Appl Geochem 23:1660–1674

    Google Scholar 

  • Rötting TS, Thomas RC, Ayora C, Carrera J (2008c) Passive treatment of acid mine drainage with high metal concentrations using dispersed alkaline substrate. J Environ Qual 37:1741–1751

    Google Scholar 

  • Sánchez-España J, Reyes J (2019) Comparing schwertmannite and hydrobasaluminite dissolution in ammonium oxalate (ph 3.0): implications for metal speciation studies by sequential extraction. Minerals 9:57. https://doi.org/10.3390/min9010057

    Article  CAS  Google Scholar 

  • Sánchez-España J, Lopez-Pamo E, Santofimia E, Aduvire O, Reyes J, Barettino D (2005) Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): geochemistry, mineralogy and environmental implications. Appl Geochem 20:1320–1356

    Google Scholar 

  • Sánchez-España J, Yusta I, Gray J, Burgos WD (2016) Geochemistry of dissolved aluminum at low pH: extent and significance of Al–Fe (III) coprecipitation below pH 4.0. Geochim Cosmochim Acta 175:128–149

    Google Scholar 

  • Schwertmann U, Fitzpatrick RW (1992) Iron minerals in surface environments. In: Skinner HCW, Fitzpatrick RW (eds) Biomineralization processes of iron and manganese-modern and ancient environments. Catena Verlag, pp 7–30

  • Shum M, Lavkulich L (1998) Speciation and solubility relationships of Al, cu and Fe in solutions associated with sulfuric acid leached mine waste rock. Environ Geol 38:59–68

    Google Scholar 

  • Simon M, Martin F, Garcia I, Bouza P, Dorronsoro C, Aguilar J (2005) Interaction of limestone grains and acidic solutions from the oxidation of pyrite tailings. Environ Pollut 135:65–72

    CAS  Google Scholar 

  • Skousen J, Politan K, Hilton T, Meek A (1990) Acid mine drainage treatment systems: chemicals and costs. Green Lands 20:31–37

    Google Scholar 

  • Smith KS, Figueroa LA, Plumlee GS (2013) Can treatment and disposal costs be reduced through metal recovery? Golden, Colorado, USA. In: Brown A, Figueroa L, Wolkersdorfer C (eds) Reliable mine water technology (Vol I). Annual International Mine Water Association Conference, pp 729–735

  • Tarras-Wahlberg NH, Lane SN (2003) Suspended sediment yield and metal contamination in a river catchment affected by El Niño events and gold mining activities: the Puyango river basin, southern Ecuador. Hydrol Process 17:3101–3123

    Google Scholar 

  • Tarras-Wahlberg NH, Flachier A, Lane SN, Sangfors O (2001) Environmental impacts and metal exposure of aquatic ecosystems in rivers contaminated by small scale gold mining: the Puyango river basin, southern Ecuador. Sci Total Environ 278:239–261

    CAS  Google Scholar 

  • Utgikar VP, Tabak HH, Haines JR, Govin R (2003) Quantification of toxic and inhibitory impact of copper and zinc on mixed cultures of sulfate-reducing bacteria. Biotechnol Bioeng 83:306–312

    Google Scholar 

  • Verplanck PL, Nordstrom DK, Taylor HE (1999) Overview of rare earth element investigations in acid waters of US geological survey abandoned mine lands watersheds. US Geol Survey Water-Resour Investig Rep 99- 4018A:83–92

    Google Scholar 

  • Verplanck PL, Dk N, Taylor HE, Kimball BA (2004) Rare earth element partitioning between hydrous ferricoxides and acid mine water during iron oxidation. Appl Geochem 9:1339–1354

    Google Scholar 

  • Verweij W (2007) Chemical equilibria in aquatic systems—CHEAQS pro-PC calculating program. Retrieved from http://home.tiscali.nl/cheaqs/index.html. Accessed 4 Oct 2015

  • WHO - World Health organization (2011) Guidelines for drinking water quality Vol 1, 4th edition. Genove. ISBN: 9789241548151

  • Wood SA, Gammons CH, Parker SR (2006) The behaviour of rare earth elements in naturally and anthropogenically acidified waters. J Alloys Compd 418:161–165

    CAS  Google Scholar 

  • Younger PL, Banwart SA, Hedin RS (2002) Mine water - hydrology, pollution, remediation. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Yu JY, Heo B, Choi IK, Cho JP, Chang HW (1999) Apparent solubilities of schwertmannite and ferrihydrite in natural stream waters polluted by mine drainage. Geochim Cosmochim Acta 3:3407–3416

    Google Scholar 

  • Zachara JM, Cowan CE, Resch CT (1991) Sorption of divalent metals on calcite. Geochim Cosmochim Acta 55:1549–1562

    CAS  Google Scholar 

  • Zhao F, Cong Z, Sun H, Ren D (2007) The geochemistry of rare earth elements (REE) in acid mine drainage from the Sitai coal mine, Shanxi Province, North China. Int J Coal Geol 70:184–192

    CAS  Google Scholar 

  • Zhou B, Li Z, Zhao Y, Zhang C, Wei Y (2016) Rare earth elements supply vs. clean energy technologies: new problems to solve. Gospod Surowcami Miner 32:9–44

    Google Scholar 

  • Zhou B, Li Z, Congcong C (2017) Global potential of rare earth resources and rare earth demand from clean technologies. Minerals. 7. https://doi.org/10.3390/min7110203

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the material and human resources displayed from INIGEMM (Ecuadorian National Research Institute of Geology, Mining and Metallurgy) and CIMA (Centre for Marine and Environmental Research, Algarve University) to favour this research.

Funding

This work was supported by PROMETEO Ecuadorian program (Secretary of Superior Education, Science, Technology and Innovation) in the framework of the project “Experiencia Piloto en la Remediación y Mitigación de la Oxidación de Sulfuros y la Generación de AMD en Relaveras del Distrito Minero de Zaruma-Portovelo”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cinta Barba-Brioso.

Additional information

Responsible editor: Marcus Schulz

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delgado, J., Barba-Brioso, C., Ayala, D. et al. Remediation experiment of Ecuadorian acid mine drainage: geochemical models of dissolved species and secondary minerals saturation. Environ Sci Pollut Res 26, 34854–34872 (2019). https://doi.org/10.1007/s11356-019-06539-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06539-3

Keywords

Navigation