Skip to main content

Nitrate Characterization as Phase Change Materials to Evaluate Energy Storage Capacity

  • Conference paper
  • First Online:
Innovation and Research (CI3 2020)

Abstract

This research aims to characterize nitrates as phase change materials (PCM) for energy storage in renewable energy systems. Sodium Nitrate (NaNO3), Sodium Nitrite (NaNO2) and Potassium Nitrate (KNO3) have been considered to be characterized by applying differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and Thermogravimetric analysis (TGA). The heat capacity, thermal stability and microstructure of each material have been evaluated. NaNO2 has the highest enthalpy value (221 kJ.kg−1), has good thermal stability recording a maximum mass loss of 1.7% at 500 °C and its specific heat has been determined to be 1.8 kJ.kg−1.K−1. Generally, all the PCM studied have granular microstructure but have different grain sizes, in addition, they do not have cracks and porosity in their structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agyenim, F., Hewitt, N., Eames, P., Smyth, M.: A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew. Sustain. Energy Rev. 14, 615–626 (2010)

    Article  Google Scholar 

  2. Kousksou, T., Bruel, P., Jamil, A., El Rhafiki, T., Zeraouli, Y.: Energy storage: applications and challenges. Sol. Energy Mater. Sol. Cells 120(PART A), 59–80 (2014)

    Google Scholar 

  3. Acurio, K., Chico-Proano, A., Martínez-Gómez, J., Ávila, C.F., Ávila, Á., Orozco, M.: Thermal performance enhancement of organic phase change materials using spent diatomite from the palm oil bleaching process as support. Constr. Build. Mater. 192, 633–642 (2018)

    Article  Google Scholar 

  4. Beltrán, R.D., Martínez-Gómez, J.: Analysis of phase change materials (PCM) for building wallboards based on the effect of environment. J. Build. Eng. 24, 100726 (2019)

    Article  Google Scholar 

  5. Forrester, J.: The value of CSP with thermal energy storage in providing grid stability. Energy Procedia 49, 1632–1641 (2014)

    Article  Google Scholar 

  6. Aldás, P.S.D., Constante, J., Tapia, G.C., Martínez-Gómez, J.: Monohull ship hydrodynamic simulation using CFD. Int. J. Math. Oper. Res. 15(4), 417–433 (2019)

    Article  MathSciNet  Google Scholar 

  7. Espinoza, V.S., Guayanlema, V., Martínez-Gómez, J.: Energy efficiency plan benefits in Ecuador: long-range energy alternative planning model. Int. J. Energy Econ. Policy 8(4), 52–54 (2018)

    Google Scholar 

  8. Kastillo, J.P., Martínez, J., Riofrio, A.J., Villacis, S.P., Orozco, M.A.: Computational fluid dynamic analysis of olive oil in different induction pots. In: 1st Pan-American Congress on Computational Mechanics–PANACM 2015, pp. 729–741 (2015)

    Google Scholar 

  9. Kastillo, J.P., Martínez-Gómez, J., Villacis, S.P., Riofrio, A.J.: Thermal natural convection analysis of olive oil in different cookware materials for induction stoves. Int. J. Food Eng. 13(3) (2017)

    Google Scholar 

  10. Rodríguez, D., Martínez-Gómez, J., Guerrón, G., Riofrio, A.: Impact of induction stoves penetration over power quality in Ecuadorian households. Revista ESPACIOS 40(13) (2019)

    Google Scholar 

  11. Martínez-Gómez, J., Ibarra, D., Villacis, S., Cuji, P., Cruz, P.R.: Analysis of LPG, electric and induction cookers during cooking typical Ecuadorian dishes into the national efficient cooking program. Food Policy 59, 88–102 (2016)

    Article  Google Scholar 

  12. Martínez-Gómez, J.: Material selection for multi-tubular fixed bed reactor Fischer-Tropsch reactor. Int. J. Math. Oper. Res. 13(1), 1–29 (2018)

    Article  MathSciNet  Google Scholar 

  13. Villacís, S., Martínez, J., Riofrío, A.J., Carrión, D.F., Orozco, M.A., Vaca, D.: Energy efficiency analysis of different materials for cookware commonly used in induction cookers. Energy Procedia 75, 925–930 (2015)

    Article  Google Scholar 

  14. Martínez-Gómez, J., Guerrón, G., Riofrio, A.J.: Analysis of the “Plan Fronteras” for clean cooking in Ecuador. Int. J. Energy Econ. Policy 7(1), 135–145 (2017)

    Google Scholar 

  15. Villacreses, G., Martínez-Gómez, J., Quintana, P.: Geolocation of electric bikes recharging stations: city of Quito study case. Int. J. Math. Oper. Res. 14(4), 495–516 (2019)

    Article  MathSciNet  Google Scholar 

  16. Segarra, M., Martorell, I., Cabeza, L.F., Fernandez, A.I., Martínez, M.: Selection of materials with potential in sensible thermal energy storage. Sol. Energy Mater. Sol. Cells 94, 1723–1729 (2010)

    Article  Google Scholar 

  17. Villacreses, G., Gaona, G., Martínez-Gómez, J., Jijón, D.J.: Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: the case of continental Ecuador. Renew. Energy 109, 275–286 (2017)

    Article  Google Scholar 

  18. Martínez, J., Martí-Herrero, J., Villacís, S., Riofrio, A.J., Vaca, D.: Analysis of energy, CO2 emissions and economy of the technological migration for clean cooking in Ecuador. Energy Policy 107, 182–187 (2017)

    Article  Google Scholar 

  19. Kousksou, T., Bruel, P., Jamil, A., El Rha, T., Zeraouli, Y.: Energy storage: applications and challenges. Sol. Energy Mater. Sol. Cells 120, 59–80 (2014)

    Article  Google Scholar 

  20. Oliver, A., Neila, F.J., García-Santos, A.: Clasificación y selección de materiales de cambio de fase según sus características para su aplicación en sistemas de almacenamiento de energía térmica. Mater. Construcción 62, 131–140 (2012)

    Article  Google Scholar 

  21. Juárez Varón, D., Ferrándiz Bou, S., Balart Gimeno, R.A., García Sanoguera, D.: Estudio de materiales con cambio de fase (PCM) y análisis SEM de micro PCM. 3c Tecnol. 3, 54–77 (2012)

    Google Scholar 

  22. Gaona, D., Urresta, E., Martínez, J., Guerrón, G.: Medium temperature phase change materials thermal characterization by the T-History method and differential scanning calorimetry. Exp. Heat Transf. 30(5), 463–474 (2017)

    Article  Google Scholar 

  23. Lazaro, A., Peñalosa, C., Solé, A., Diarce, G., Haussmann, T., Fois, M., Zalba, B., Gshwander, S., Cabeza, L.F.: Intercomparative tests on phase change materials characterisation with differential scanning calorimeter. Appl. Energy 109, 415–420 (2013)

    Article  Google Scholar 

  24. Bauer, T., Laing, D., Tamme, R.: Characterization of sodium nitrate as phase change material. Int. J. Thermophys. 33(1), 91–104 (2012). https://doi.org/10.1007/s10765-011-1113-9

    Article  Google Scholar 

  25. Kourkova, L., Svoboda, R., Sadovska, G., Podzemna, V., Kohutova, A.: Heat capacity of NaNO2. Thermochim. Acta 491(1–2), 80–83 (2009). https://doi.org/10.1016/j.tca.2009.03.005

    Article  Google Scholar 

  26. Graeter, F., Rheinlander, J.: Thermische Energiespeicherung mit Phasenwechsel im Bereich von 150 bis 400 °C, 65–75 (2001)

    Google Scholar 

  27. Chango, J.I.: Instrucciones de uso TGA 50 Shimadzu. Quito (2015)

    Google Scholar 

  28. Bauer, T., Breidenbach, N., Eck, M.: Overview of molten salt storage systems and material development for solar thermal power plants, pp. 1–8 (2012)

    Google Scholar 

  29. Raade, J.W., Padowitz, D.: Development of molten salt heat transfer fluid with low melting point and high thermal stability. Sol. Energy Eng. 133, 031013 (2011)

    Article  Google Scholar 

  30. Hoshino, Y., Utsunomiya, T., Abe, O.: Thermal decomposition of sodium nitrate and the effects of several oxides on the decomposition. Bull. Chem. Soc. Jpn. 54(5), 1385–1391 (1981)

    Article  Google Scholar 

  31. Gimenez, P., Fereres, S.: Effect of heating rates and composition on the thermal decomposition of nitrate based molten salts. Energy Procedia 69, 654–662 (2015)

    Article  Google Scholar 

  32. Li, C., Yan, N., Ye, Y., Lv, Z., He, X., Huang, J., Zhang, N.: Thermal analysis and stability of boron/potassium nitrate pyrotechnic composition at 180 °C. Appl. Sci. (Switzerland) 9(17) (2019). https://doi.org/10.3390/app9173630

  33. Wagner, M., Widmann, G.: Thermal Analysis in Practice. Mettler-Toledo (2009)

    Google Scholar 

  34. Granados, Y.A.: Importancia De Los Ensayos TGA y DSC en el Estudio de las Propiedades Térmicas de Mezclas Asfálticas, Universidad Distrital Francisco José De Caldas (2015)

    Google Scholar 

  35. Solar, P., Gmbh, I.: Survey of thermal storage for parabolic trough power plants period of performance, September 2000

    Google Scholar 

  36. Zalba, B.: Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl. Therm. Eng. 23(3), 251–283 (2003)

    Article  Google Scholar 

  37. Svoboda, R., Sadovska, G., Podzemna, V., Kohutova, A., Organické, Ú., Av, B.: Heat capacity of NaNO2, July 2009

    Google Scholar 

  38. National Center for Biotechnology Information, Pubchem Compound Database (2017)

    Google Scholar 

  39. Kawakami, M., Suzuki, K., Yokoyama, S., Takenaka, T.: Heat capacity measurement of molten NaNO 3 -NaNO 2 -KNO 3 by drop calorimetry, pp. 201–208 (2004)

    Google Scholar 

  40. Jeong, S.G., Chung, O., Yu, S., Kim, S., Kim, S.: Improvement of the thermal properties of Bio-based PCM using exfoliated graphite nanoplatelets. Sol. Energy Mater. Sol. Cells 117, 87–92 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This research takes part of the project Selection, characterization and simulation of phase change materials for thermal comfort, cooling and energy storage. This project is part of the INEDITA call for R&D research projects in the field of energy and materials. This research takes part of the project P121819, Parque de Energias Renovables founded by Universidad International SEK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Martínez-Gómez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Orozco, M., Vásquez, F., Martínez-Gómez, J., Acurio, K., Chico-Proano, A. (2021). Nitrate Characterization as Phase Change Materials to Evaluate Energy Storage Capacity. In: Botto-Tobar, M., Zambrano Vizuete, M., Díaz Cadena, A. (eds) Innovation and Research. CI3 2020. Advances in Intelligent Systems and Computing, vol 1277. Springer, Cham. https://doi.org/10.1007/978-3-030-60467-7_31

Download citation

Publish with us

Policies and ethics