Skip to main content

Physical Variables Monitoring to Contribute to Landslide Mitigation with IoT-Based Systems

  • Conference paper
  • First Online:
Advances in Emerging Trends and Technologies (ICAETT 2020)

Abstract

This document proposes the design of a low-cost platform that contributes to the monitoring of the physical variables involved in the process of generating land-slides through a low-power wide-area network. The system consists of three components. The first is the electronic module in charge of integrating sensors, sampling, digitizing, and sending data. The second is the LoRa wireless commu-nication system that links all the nodes located in strategic sites in the study area with the gateway, then the bidirectional messages (data) are sent from the gate-way to the server hosted in the cloud through the MQTT protocol, where all the data acquired from the sensor network and the web server are stored. The third component is the display of information to the user through HTTP requests from any multi-platform device. The platform generates a large amount of data that will serve as input for future investigations related to landslides. This design will al-low the generation of more reliable early warning systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cobos, A.: Diseño e implementación de una arquitectura IoT basada en tecnologías. Open source (2016)

    Google Scholar 

  2. Zhou, Q., Zheng, K., Hou, L., Xing, J., Xu, R.: Design and implementation of open LoRa for IoT. IEEE Access 7, 100649–100657 (2019). https://doi.org/10.1109/access.2019.2930243

    Article  Google Scholar 

  3. Tsiatsis, V., Karnouskos, S., Höller, J., Boyle, D., Mulligan, C.: Origins and IoT landscape. Internet Things 9–30 (2019). https://doi.org/10.1016/b978-0-12-814435-0.00013-4

  4. Bouskela, M., Casseb, M., Bassi, S., De Luca, C., Marcelo, F.: La ruta hacia las smart cities: Migrando de una gestión tradicional a la ciudad inteligente (2016)

    Google Scholar 

  5. Banco Mundial: Desarrollo urbano: panorama general. https://www.bancomundial.org/es/topic/urbandevelopment/overview

  6. Statista: Los desastres naturales en el mundo - Datos estadísticos. https://es.statista.com/temas/3597/desastres-naturales/

  7. INEC-Instituto Nacional de Estadísticas y Censos: Proyecciones Poblacionales. https://www.ecuadorencifras.gob.ec/proyecciones-poblacionales/

  8. Argüello, A., Arboleda, D., Menoscal, J., Maldonado, D., Urresta, S.: Monitoreo de la reforestación en las quebradas en el Norte de Quito. Enfoque UTE 3, 42–63 (2012). https://doi.org/10.29019/enfoqueute.v3n2.4

    Article  Google Scholar 

  9. Secretaría General de Seguridad y Gobernabilidad: Informe Técnico de Evento/Emergencia Barrio Pinar Alto, pp. 5–10 (2019)

    Google Scholar 

  10. International Telecommunication Union: Disruptive technologies and their use in disaster risk reduction and management, pp. 1–39. International Telecommunication Union (2019)

    Google Scholar 

  11. Campbell, R.H.: Soil Slips, Debris Flows, and Rainstorms in the Santa Monica Mountains and Vicinity, Southern California. U.S. Geological Survey professional paper 851, 51 p. (1975)

    Google Scholar 

  12. Liaw, T.L.D.: Development of an intelligent disaster information- integrated platform for radiation monitoring (2014). https://doi.org/10.1007/s11069-014-1565-x

  13. Mitra, P., Ray, R., Chatterjee, R., Basu, R., Saha, P., Raha, S., Barman, R., Patra, S., Biswas, S.S., Saha, S.: Flood forecasting using Internet of Things and artificial neural networks. In: 7th IEEE Annual Information Technology, Electronics and Mobile Communication Conference, IEEE IEMCON 2016 (2016). https://doi.org/10.1109/IEMCON.2016.7746363

  14. Sakhardande, P., Hanagal, S., Kulkarni, S.: Design of disaster management system using IoT based interconnected network with smart city monitoring. In: 2016 International Conference on Internet of Things and Applications, IOTA 2016, pp. 185–190 (2016). https://doi.org/10.1109/IOTA.2016.7562719

  15. Biansoongnern, S., Plungkang, B., Susuk, S.: Development of low cost vibration sensor network for early warning system of landslides. Energy Procedia 89, 417–420 (2016). https://doi.org/10.1016/j.egypro.2016.05.055

    Article  Google Scholar 

  16. Omar, M., Foughali, K., Fathallah, K., Frihida, A., Claramunt, C.: Landsliding early warning prototype using MongoDB and Web of Things technologies. Procedia Comput. Sci. 98, 578–583 (2016). https://doi.org/10.1016/j.procs.2016.09.090

    Article  Google Scholar 

  17. Chung, C.C., Lin, C.P.: A comprehensive framework of TDR landslide monitoring and early warning substantiated by field examples. Eng. Geol. 262, 105330 (2019). https://doi.org/10.1016/j.enggeo.2019.105330

    Article  Google Scholar 

  18. Tan, Y.K.: Energy Harvesting Autonomous Sensor Systems: Design, Analysis, and Practical Implementation. CRC Press, Boca Raton (2013)

    Google Scholar 

  19. DFROBOT: Wind Speed Sensor Voltage. https://wiki.dfrobot.com/Wind_Speed_Sensor_Voltage_Type_0-5V__SKU_SEN0170

  20. Alcides, P., León, J., Arlex, I., Andalia, I.: Captación de lluvia con pluviógrafos de cubeta y su postprocesamiento. Ing. Hidráulica y Ambient 34, 73–87 (2013)

    Google Scholar 

  21. Hassan, Q.F.: Internet of Things A to Z: Technologies and Applications. Wiley-IEEE Press, Piscataway (2018)

    Book  Google Scholar 

  22. Dai, K., Li, X., Lu, C., You, Q., Huang, Z., Wu, H.: A low-cost energy-efficient cableless geophone unit for passive surface wave surveys. Sensors 15, 24698–24715 (2015). https://doi.org/10.3390/s151024698

    Article  Google Scholar 

  23. Quetec: L80 GPS protocol specification (2014)

    Google Scholar 

  24. Mohamed, K.S., Mohamed, K.S.: The Era of Internet of Things. Springer, Cairo (2019). https://doi.org/10.1007/978-3-030-18133-8

  25. Ramesh, M.V.: Design, development, and deployment of a wireless sensor network for detection of landslides. Ad Hoc Netw. 13, 2–18 (2014). https://doi.org/10.1016/j.adhoc.2012.09.002

    Article  Google Scholar 

  26. Siu, C.: IoT and Low-Power Wireless: Circuits, Architectures, and Techniques. CRC Press, Boca Raton (2018)

    Book  Google Scholar 

  27. Dragino: LG01N/OLG01N LoRa Gateway User Manual (2020)

    Google Scholar 

  28. Tantitharanukul, N., Osathanunkul, K., Hantrakul, K., Pramokchon, P., Khoenkaw, P.: MQTT-topics management system for sharing of open data. In: 2017 International Conference on Digital Arts, Media and Technology, pp. 62–65 (2017). https://doi.org/10.1109/ICDAMT.2017.7904935

  29. Lea, P.: Internet of Things for Architects: Architecting IoT Solutions by Implementing Sensors, Communication Infrastructure, Edge Computing, Analytics, and Security. Packt Publishing, Birmingham (2018)

    Google Scholar 

  30. Ejaz, W., Anpalagan, A.: Internet of Things for smart cities: technologies, big data security (2019). https://doi.org/10.1007/978-3-319-95037-2_1

  31. Dragino: MQTT Forward Instruction - Wiki for Dragino Project. http://wiki.dragino.com/index.php?title=MQTT_Forward_Instruction

  32. Alqinsi, P., Edward, I.J.M., Ismail, N., Darmalaksana, W.: IoT-based UPS monitoring system using MQTT protocols. In: Proceeding of the 2018 4th International Conference on Wireless and Telematics, ICWT 2018, pp. 1–5 (2018). https://doi.org/10.1109/ICWT.2018.8527815

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Toapanta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Toapanta, R., Chafla, J., Toapanta, A. (2021). Physical Variables Monitoring to Contribute to Landslide Mitigation with IoT-Based Systems. In: Botto-Tobar, M., S. Gómez, O., Rosero Miranda, R., Díaz Cadena, A. (eds) Advances in Emerging Trends and Technologies. ICAETT 2020. Advances in Intelligent Systems and Computing, vol 1302. Springer, Cham. https://doi.org/10.1007/978-3-030-63665-4_5

Download citation

Publish with us

Policies and ethics