Skip to main content

Influence of Aqueous Phase of Hydrothermal Carbonization Feeding on Carbon Fixation by Microalgae

  • Conference paper
  • First Online:
Trends in Artificial Intelligence and Computer Engineering (ICAETT 2022)

Abstract

CO2 biofixation is one of the most promising alternatives in CO2 capture and storage. In this study, the ability to cultivate microalgae and the influence of the use of the aqueous phase (AP) from hydrothermal carbonization (HTC) of coffee husk on the biofixation of CO2 were investigated. The influence of nutrient addition on the growth rate of Chlorella sp., was evaluated through the response surface methodology. The results indicate that the optimum nutrient levels were 0.20 g L−1 of sodium acetate and 1.32% (v/v) of AP. The effect of CO2 concentration on growth and biofixation kinetics were determined using 0.04, 5, 10, 15, and 30% (v/v) CO2. The maximum CO2 biofixation (71.00 mg L−1 d−1) and the highest biomass concentration (0.40 g L−1) were determined at 15% (v/v) CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Choi, Y.Y., Patel, A.K., Hong, M.E., Chang, W.S., Sim, S.J.: Microalgae bioenergy with carbon capture and storage (BECCS): an emerging sustainable bioprocess for reduced CO2 emission and biofuel production. Bioresour. Technol. Reports 7, 100270 (2019). https://doi.org/10.1016/j.biteb.2019.100270

    Article  Google Scholar 

  2. Fridahl, M., Lehtveer, M.: Bioenergy with carbon capture and storage (BECCS): global potential, investment preferences, and deployment barriers. Energy Res. Soc. Sci. 42, 155–165 (2018). https://doi.org/10.1016/j.erss.2018.03.019

    Article  Google Scholar 

  3. Pires, J.C.M., Alvim-Ferraz, M.C.M., Martins, F.G., Simões, M.: Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renew. Sustain. Energy Rev. 16(5), 3043–3053 (2012). https://doi.org/10.1016/j.rser.2012.02.055

    Article  Google Scholar 

  4. Van Den Hende, S., Vervaeren, H., Boon, N.: Flue gas compounds and microalgae: (Bio-)chemical interactions leading to biotechnological opportunities. Biotechnol. Adv. 30(6), 1405–1424 (2012). https://doi.org/10.1016/j.biotechadv.2012.02.015

    Article  Google Scholar 

  5. Martunus, Helwani, Z., Wiheeb, A.D., Kim, J., Othman, M.R.: In situ carbon dioxide capture and fixation from a hot flue gas. Int. J. Greenh. Gas Control 6, 179–188 (2012). https://doi.org/10.1016/j.ijggc.2011.11.012

  6. Kassim, M.A., Meng, T.K.: Carbon dioxide (CO2) biofixation by microalgae and its potential for biorefinery and biofuel production. Sci. Total Environ. 584–585, 1121–1129 (2017). https://doi.org/10.1016/j.scitotenv.2017.01.172

    Article  Google Scholar 

  7. Yahya, L., Harun, R., Abdullah, L.C.: Screening of native microalgae species for carbon fixation at the vicinity of Malaysian coal-fired power plant. Sci. Rep. 10(1), 1–14 (2020). https://doi.org/10.1038/s41598-020-79316-9

    Article  Google Scholar 

  8. Martínez, L., Otero, M., Morán, A., García, A.I.: Selection of native freshwater microalgae and cyanobacteria for CO2 biofixation. Environ. Technol. (United Kingdom) 34(24), 3137–3143 (2013). https://doi.org/10.1080/09593330.2013.808238

    Article  Google Scholar 

  9. Du, Z., et al.: Cultivation of a microalga Chlorella vulgaris using recycled aqueous phase nutrients from hydrothermal carbonization process. Bioresour. Technol. 126, 354–357 (2012). https://doi.org/10.1016/j.biortech.2012.09.062

    Article  Google Scholar 

  10. Belete, Y.Z., et al.: Characterization and utilization of hydrothermal carbonization aqueous phase as nutrient source for microalgal growth. Bioresour. Technol. 290, 121758 (2019). https://doi.org/10.1016/j.biortech.2019.121758

    Article  Google Scholar 

  11. Tsarpali, M., Arora, N., Kuhn, J.N., Philippidis, G.P.: Beneficial use of the aqueous phase generated during hydrothermal carbonization of algae as nutrient source for algae cultivation. Algal Res. 60, 102485 (2021). https://doi.org/10.1016/j.algal.2021.102485

    Article  Google Scholar 

  12. Levine, R.B., Sambolin Sierra, C.O., Hockstad, R., Obeid, W.: The use of hydrothermal carbonization to recycle nutrients in algal biofuel production. Environ. Prog. Sustain. Energy 32(4), 962–975 (2014). https://doi.org/10.1002/ep.11812

    Article  Google Scholar 

  13. Tarhan, S.Z., Koçer, A.T., Özçimen, D., Gökalp, İ: Cultivation of green microalgae by recovering aqueous nutrients in hydrothermal carbonization process water of biomass wastes. J. Water Process Eng. 40, 101783 (2021). https://doi.org/10.1016/j.jwpe.2020.101783

    Article  Google Scholar 

  14. Griffiths, M.J., Garcin, C., van Hille, R.P., Harrison, S.T.L.: Interference by pigment in the estimation of microalgal biomass concentration by optical density. J. Microbiol. Methods 85(2), 119–123 (2011). https://doi.org/10.1016/j.mimet.2011.02.005

    Article  Google Scholar 

  15. Kassim, M.A., Meng, T.K.: Carbon dioxide (CO2) biofixation by microalgae and its potential for biorefinery and biofuel production. Sci/ Total Environ. 584–585, 1121–1129 (2017). https://doi.org/10.1016/j.scitotenv.2017.01.172

    Article  Google Scholar 

  16. da Silva, C.M.S., Vital, B.R., de Ávila Rodrigues, F., de Almeida, Ê.W., de Carneiro, A.C.O., Cândido, W.L.: Hydrothermal and organic-chemical treatments of eucalyptus biomass for industrial purposes. Bioresour. Technol. 289, 121731 (2019). https://doi.org/10.1016/j.biortech.2019.121731

    Article  Google Scholar 

  17. Langone, M., Basso, D.: Process waters from hydrothermal carbonization of sludge: characteristics and possible valorization pathways. Int. J. Environ. Res. Public Health 17(18), 1–31 (2020). https://doi.org/10.3390/ijerph17186618

    Article  Google Scholar 

  18. Ekpo, U., Ross, A.B., Camargo-Valero, M.A., Williams, P.T.: A comparison of product yields and inorganic content in process streams following thermal hydrolysis and hydrothermal processing of microalgae, manure and digestate. Bioresour. Technol. 200, 951–960 (2016). https://doi.org/10.1016/j.biortech.2015.11.018

    Article  Google Scholar 

  19. Abreu, A.P., Fernandes, B., Vicente, A.A., Teixeira, J., Dragone, G.: Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresour. Technol. 118, 61–66 (2012). https://doi.org/10.1016/j.biortech.2012.05.055

    Article  Google Scholar 

  20. Bei, X., et al.: Semi-continuous cultivation of Chlorella vulgaris using chicken compost as nutrients source: growth optimization study and fatty acid composition analysis. Energy Convers. Manag. 164(March), 363–373 (2018). https://doi.org/10.1016/j.enconman.2018.03.020

    Article  Google Scholar 

  21. Kim, M.-K., Jeune, K.-H.: Use of FT-IR to Identify Enhanced Biomass Production_buenarefencia de bandas FTIR (2009)

    Google Scholar 

  22. de Souza, M.P., et al.: Screening of fungal strains with potentiality to hydrolyze microalgal biomass by Fourier Transform Infrared Spectroscopy (FTIR). Acta Sci. Technol. 41(1), 39693 (2019). https://doi.org/10.4025/actascitechnol.v41i1.39693

    Article  Google Scholar 

  23. Muhammad, A., Yuxi, L., Marwa, M.E.-D., Chunjiang, Z., Xiangkai, L., El-Sayed, S.: A complete characterization of microalgal biomass through FTIR/TGA/CHNS analysis: an approach for biofuel generation and nutrients removal. Renew. Energy 163, 1973–1982 (2020). https://doi.org/10.1016/j.renene.2020.10.066

    Article  Google Scholar 

  24. Duygu, D.Y., et al.: Fourier transform infrared (FTIR) spectroscopy for identification of Chlorella vulgaris Beijerinck 1890 and Scenedesmus obliquus (Turpin) Kützing 1833. Afr. J. Biotechnol. 11(16), 3817–3824 (2012). https://doi.org/10.5897/AJB11.1863

    Article  Google Scholar 

  25. Song, H., et al.: Extraction optimization, purification, antioxidant activity, and preliminary structural characterization of crude polysaccharide from an arctic Chlorella sp. Polymers 10(3), 292 (2018). https://doi.org/10.3390/polym10030292

    Article  Google Scholar 

  26. Narayanan, M., et al.: Chemosphere Phycoremediation potential of Chlorella sp. on the polluted Thirumanimutharu river water. Chemosphere 277, 130246 (2021). https://doi.org/10.1016/j.chemosphere.2021.130246

    Article  Google Scholar 

  27. Rizwan, M., Mujtaba, G., Memon, S.A., Lee, K., Rashid, N.: Exploring the potential of microalgae for new biotechnology applications and beyond: a review. Renew. Sustain. Energy Rev. 92, 394–404 (2018). https://doi.org/10.1016/j.rser.2018.04.034

    Article  Google Scholar 

  28. Saka, C., Kaya, M., Bekiroğullari, M.: Chlorella vulgaris microalgae strain modified with zinc chloride as a new support material for hydrogen production from NaBH4 methanolysis using CuB, NiB, and FeB metal catalysts. Int. J. Hydrogen Energy 45(3), 1959–1968 (2020). https://doi.org/10.1016/j.ijhydene.2019.11.106

    Article  Google Scholar 

  29. Hazeem, L.J., et al.: Investigation of the toxic effects of different polystyrene micro-and nanoplastics on microalgae Chlorella vulgaris by analysis of cell viability, pigment content, oxidative stress and ultrastructural changes. Marine Pollut. Bull. 156, 111278 (2020). https://doi.org/10.1016/j.marpolbul.2020.111278

    Article  Google Scholar 

  30. Kose, A., Oncel, S.S.: Properties of microalgal enzymatic protein hydrolysates: biochemical composition, protein distribution and FTIR characteristics. Biotechnol. Rep. 6, 137–143 (2015). https://doi.org/10.1016/j.btre.2015.02.005

    Article  Google Scholar 

  31. Rendón-Castrillón, L., Ramírez-Carmona, M., Ocampo-López, C., Giraldo-Aristizabal, R.: Evaluation of the operational conditions in the production and morphology of Chlorella sp. Braz. J. Biol. 81(1), 202–209 (2021). https://doi.org/10.1590/1519-6984.228874

    Article  Google Scholar 

  32. Clément-Larosière, B., Lopes, F., Gonçalves, A., Taidi, B., Benedetti, M., Minier, M., Pareau, D.: Carbon dioxide biofixation by Chlorella vulgaris at different CO2 concentrations and light intensities. Eng. Life Sci. 14, 509–519 (2014). https://doi.org/10.1002/elsc.201200212

    Article  Google Scholar 

  33. Lu, S., Wang, J., Niu, Y., Yang, J., Zhou, J., Yuan, Y.: Metabolic profiling reveals growth related FAME productivity and quality of Chlorella sorokiniana with different inoculum sizes. Biotechnol. Bioeng. 109(7), 1651–1662 (2012). https://doi.org/10.1002/bit.24447

    Article  Google Scholar 

  34. Molazadeh, M., Danesh, S., Ahmadzadeh, H., Pourianfar, H.R.: Influence of CO2 concentration and N:P ratio on Chlorella vulgaris-assisted nutrient bioremediation, CO2 biofixation and biomass production in a lagoon treatment plant. J. Taiwan Inst. Chem. Eng. 96, 114–120 (2019). https://doi.org/10.1016/j.jtice.2019.01.005

    Article  Google Scholar 

  35. Rahaman, M.S.A., Cheng, L.H., Xu, X.H., Zhang, L., Chen, H.L.: A review of carbon dioxide capture and utilization by membrane integrated microalgal cultivation processes. Renew. Sustain. Energy Rev. 15(8), 4002–4012 (2011). https://doi.org/10.1016/j.rser.2011.07.031

    Article  Google Scholar 

  36. Francisco, É.C., Neves, D.B., Jacob-Lopes, E., Franco, T.T.: Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality. J. Chem. Technol. Biotechnol. 85(3), 395–403 (2010). https://doi.org/10.1002/jctb.2338

    Article  Google Scholar 

  37. Tebbani, S., Filali, R., Lopes, F., Dumur, D., Pareau, D.: Microalgae. In: Tebbani, S., Lopes, F., Filali, R., Dumur, D., Pareau, D (eds.) CO2 Biofixation by Microalgae Model. Estim. Control, pp. 1–22. John Wiley & Sons, Inc., Hoboken, NJ, USA (2014)

    Google Scholar 

  38. Yadav, G., Sen, R.: Microalgal green refinery concept for biosequestration of carbon-dioxide vis-à-vis wastewater remediation and bioenergy production: Recent technological advances in climate research. J. CO2 Utilization 17, 188–206 (2017). https://doi.org/10.1016/j.jcou.2016.12.006

    Article  Google Scholar 

  39. Mousavi, S., Najafpour, G.D., Mohammadi, M.: CO2 bio-fixation and biofuel production in an airlift photobioreactor by an isolated strain of microalgae Coelastrum sp. SM under high CO2 concentrations. Environ. Sci. Pollut. Res. 25(30), 30139–30150 (2018). https://doi.org/10.1007/s11356-018-3037-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Martínez-Gómez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guerrero, M.S.A. et al. (2023). Influence of Aqueous Phase of Hydrothermal Carbonization Feeding on Carbon Fixation by Microalgae. In: Botto-Tobar, M., Gómez, O.S., Rosero Miranda, R., Díaz Cadena, A., Luna-Encalada, W. (eds) Trends in Artificial Intelligence and Computer Engineering. ICAETT 2022. Lecture Notes in Networks and Systems, vol 619. Springer, Cham. https://doi.org/10.1007/978-3-031-25942-5_34

Download citation

Publish with us

Policies and ethics