Skip to main content

Assessment of the Thermal Behavior in Social Housing in Hot Humid Climate in Ecuador

  • Conference paper
  • First Online:
Trends in Artificial Intelligence and Computer Engineering (ICAETT 2022)

Abstract

Climate change has created the need of designing efficient and sustainable housing with acceptable thermal environments for occupants. Consequently, policies that guarantee the compliance with these standards, especially for the most vulnerable populations living in hot climates are required. In this sense, this document aims to evaluate whether the compliance with NEC-HS-EE is sufficient to provide acceptable thermal environments inside naturally ventilated dwellings in very hot humid climates. For this purpose, an experimental measurement of the internal conditions, surface temperatures of the envelope and meteorological variables of a social housing located in Guayaquil – Ecuador, which complies with the regulations, is performed. Results indicate that the roof has the largest range between external and internal surface temperature compared to other envelope elements, 78 and 85 ℃ respectively. The internal air temperature varies between 25 ℃ and 36 ℃, which is higher than the outside temperature in 99% of the time. In addition, the quality of the thermal environment was evaluated using adaptive models of ANSI/ASHRAE 55 and EN 15251 standards. The dwelling had acceptable thermal conditions according to EN15251 for category III buildings. However, 13.9% of occupancy hours exceeded the limit defined by ASHRAE 55. It was also shown that the envelope does not adapt to climatic conditions, despite complying with local regulations, therefore it is necessary to define comfort criteria that adapt to local conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Silvero, F., Lops, C., Montelpare, S., Rodrigues, F.: Impact assessment of climate change on buildings in Paraguay—overheating risk under different future climate scenarios. Build. Simul. 12(6), 943–960 (2019). https://doi.org/10.1007/s12273-019-0532-6

    Article  Google Scholar 

  2. Mazzone, A.: Thermal comfort and cooling strategies in the Brazilian Amazon. An assessment of the concept of fuel poverty in tropical climates. Energy Policy 139, 111256 (2020). https://doi.org/10.1016/j.enpol.2020.111256

    Article  Google Scholar 

  3. IEA: The Future of Cooling – Opportunities for energy-efficient air conditioning. https://www.iea.org/reports/the-future-of-cooling (2018)

  4. Valderrama-Ulloa, C., Silva-Castillo, L., Sandoval-Grandi, C., Robles-Calderon, C., Rouault, F.: Indoor environmental quality in latin American buildings: a systematic literature review. Sustainability 12(2), 643 (2020). https://doi.org/10.3390/su12020643

    Article  Google Scholar 

  5. Giraldo-Castañeda, W., Czajkowski, J.D., Gómez, A.F.: Confort térmico en vivienda social multifamiliar de clima cálido en Colombia. Rev. Arquit. 23(1), 115–124 (2021). https://doi.org/10.14718/RevArq.2021.2938

    Article  Google Scholar 

  6. Castillo, E., Mite, J.: Influencia de los materiales de la envolvente enel confort térmico de las viviendas. ProgramaMucho Lote II, Guayaquil. Univ. y Soc. 11(4), 303–309 (2019). http://scielo.sld.cu/pdf/rus/v11n4/2218-3620-rus-11-04-303.pdf

    Google Scholar 

  7. Gallardo, A., Palme, M., Beltrán, D., Lobato, A., Villacreses, G.: Analysis and optimization of the thermal performance of social housing construction materials in Ecuador. In: 32nd International Conference on Passive and Low Energy Architecture. Cities, Buildings, People: Towards Regenerative Environments; Passive and Low Energy Architecture (PLEA), pp. 360–366 (2016)

    Google Scholar 

  8. ANSI/ASHRAE: Standard 55 Thermal Environmental Conditions for Human Occupancy (2017)

    Google Scholar 

  9. Romero Espinosa, H.S., Vallejo-Coral, E.C., Ortega López, M.D., Martínez-Gómez, J.: Thermal comfort evaluation in a building with phase change materials in different ecuadorian climatic zones. In: Botto-Tobar, M., Zambrano Vizuete, M., Díaz Cadena, A. (eds.) CI3 2020. AISC, vol. 1277, pp. 390–402. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-60467-7_32

    Chapter  Google Scholar 

  10. Delgado-Gutierrez, E., Canivell, J., Bienvenido-Huertas, D., Rubio-Bellido, C., Delgado-Gutierrez, D.: Ecuadorian social housing: energetic analysis based on thermal comfort to reduce energy poverty. In: Rubio-Bellido, C., Solis-Guzman, J. (eds.) Energy Poverty Alleviation, pp. 209–224. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-91084-6_9

    Chapter  Google Scholar 

  11. Espinosa, C., Cortés, A.: Confort higro-térmico en vivienda social y la percepción del habitante. INVI 30(85), 227–242 (2015). https://doi.org/10.4067/s0718-83582015000300008

    Article  Google Scholar 

  12. Medina, J.M., Rodriguez, C.M., Coronado, M.C., Garcia, L.M.: Scoping review of thermal comfort research in Colombia. Buildings 11(6), 1–27 (2021). https://doi.org/10.3390/buildings11060232

    Article  Google Scholar 

  13. Ministerio de Desarrollo Urbano y Vivienda (MIDUVI): Eficiencia energética en edificaciones residenciales (NEC-HS-EE). https://www.habitatyvivienda.gob.ec/documentos-normativos-nec-norma-ecuatoriana-de-la-construccion/ (2018)

  14. Escandón, R., Suárez, R., José, J.: Protocol for the energy behaviour assessment of social housing stock: the case of southern Europe. Energy Procedia 96(October), 907–915 (2016). https://doi.org/10.1016/j.egypro.2016.09.164

    Article  Google Scholar 

  15. Asociacion Española de Normalización y Certificación (AENOR): UNE-EN 15251. Parámetros del ambiente interior a considerar para el diseño y la evaluación de la eficiencia energética de edificios incluyendo la calidad de aire interior, condiciones térmicas y ruido. Madrid (2008)

    Google Scholar 

  16. Chartered Institution of Building Services Engineers (CIBSE): The limits of thermal comfort: avoiding overheating in European buildings. CIBSE Technical Memorandum 52 (TM52:2013). Great Britain (2013)

    Google Scholar 

  17. MIDUVI: Actualización de prioridad del proyecto: ‘Socio vivienda. https://www.habitatyvivienda.gob.ec/wp-content/uploads/downloads/2015/06/PROYECTO-SOCIO-VIVIENDA.pdf (2014)

  18. Godoy-Vaca, L., Vallejo-Coral, E.C., Martínez-Gómez, J., Orozco, M., Villacreses, G.: Predicted medium vote thermal comfort analysis applying energy simulations with phase change materials for very hot-humid climates in social housing in Ecuador. Sustainability 13(3), 1257 (2021). https://doi.org/10.3390/su13031257

    Article  Google Scholar 

  19. Litardo, J, Hidalgo-León, R, Coronel, P, Damian, A, Macías, J, Soriano, G.: Dehumidification Strategies to Improve Energy Use at Retailers: A Case Study of a Supermarket Located in Guayaquil, Ecuador. In: Proceedings of the ASME 2020 International Mechanical Engineering Congress and Exposition, vol. 8: Energy. Virtual, V008T08A031. ASME,16–19 Nov 2020. https://doi.org/10.1115/IMECE2020-23930

  20. Instituto Nacional de Meteorología e Hidrología (INAMHI): Catalogo de datos abiertos. https://www.datosabiertos.gob.ec/dataset/?organization=instituto-nacional-de-meteorologia-e-hidrologia-inamhi (2021)

  21. ASTM C1046: Standard Practice for In-Situ Measurement of Heat Flux and Temperature on Building Envelope Components (2013)

    Google Scholar 

  22. ISO 9869-1: Thermal insulation-Building elements-In situ measurement of thermal resistance and thermal transmittance (2014)

    Google Scholar 

  23. Giancola, E., Soutullo, S., Olmedo, R., Heras, M.R.: Evaluating rehabilitation of the social housing envelope: experimental assessment of thermal indoor improvements during actual operating conditions in dry hot climate, a case study. Energy Build. 75, 264–271 (2014). https://doi.org/10.1016/j.enbuild.2014.02.010

    Article  Google Scholar 

  24. Gamero-Salinas, J.C., Monge-Barrio, A., Sánchez-Ostiz, A.: Overheating risk assessment of different dwellings during the hottest season of a warm tropical climate. Build. Environ. 171, 106664 (2020). https://doi.org/10.1016/j.buildenv.2020.106664

    Article  Google Scholar 

  25. de Dear, R., Brager, G.: Developing an adaptive model of thermal comfort and preference. ASHRAE Trans. 104(1), 145–167 (1998). https://escholarship.org/uc/item/4qq2p9c6

    Google Scholar 

  26. Vellei, M., Herrera, M., Fosas, D., Natarajan, S.: The influence of relative humidity on adaptive thermal comfort. Build. Environ. 124, 171–185 (2017). https://doi.org/10.1016/j.buildenv.2017.08.005

    Article  Google Scholar 

  27. Forero, B., Hechavarría, J.: Análisis de las condiciones de confort térmico en el interior de las viviendas del complejo habitacional socio vivienda 2, etapa 1, en la ciudad de Guayaquil, Ecuador. Guayaquil – Ecuador (2015)

    Google Scholar 

  28. Bhikhoo, N., Hashemi, A., Cruickshank, H.: Improving thermal comfort of low-income housing in thailand through passive design strategies. Sustainability 9(8), 1–23 (2017). https://doi.org/10.3390/su9081440

    Article  Google Scholar 

  29. Gaudry, K.-H., Godoy-Vaca, L., Espinoza, S., Fernández, G., Lobato-Cordero, A.: Normativas de energía en edificaciones ante el cambio climático. ACI Av. en Cienc. e Ing. 11(18), 154–171 (2019). https://doi.org/10.18272/aci.v11i2.1285

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Catalina Vallejo-Coral .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vallejo-Coral, E.C., Vásquez-Aza, F., Godoy-Vaca, L., Orozco Salcedo, M., Martínez-Gómez, J. (2023). Assessment of the Thermal Behavior in Social Housing in Hot Humid Climate in Ecuador. In: Botto-Tobar, M., Gómez, O.S., Rosero Miranda, R., Díaz Cadena, A., Luna-Encalada, W. (eds) Trends in Artificial Intelligence and Computer Engineering. ICAETT 2022. Lecture Notes in Networks and Systems, vol 619. Springer, Cham. https://doi.org/10.1007/978-3-031-25942-5_35

Download citation

Publish with us

Policies and ethics