Skip to main content

Material Selection for a Biomass Heat Exchange Multicriteria Decision Methods: Study Case on Ecuador

  • Conference paper
  • First Online:
Trends in Artificial Intelligence and Computer Engineering (ICAETT 2022)

Abstract

Regarding the necessities of exploring efficient energy sources, the co-generation technologies using biomass proven to be a useful alternative. However, in developing countries such as Ecuador, the best materials are not always available causing the need to import them and elevating costs. In this sense, the present research proposes a selection of the best material for a heat exchanger that uses biomass hot fluids by multicriteria decision methods means, taking in consideration the availability on the country. In this way, the method uses a ponderation of the candidate materials by the subjective technique of Analytic Hierarchy Process and a selection using the multicriteria optimization and compromise solution, the technique for order preference by similarity to ideal solution and the complex proportional assessment method, also, the relationship of the methods are correlated by the Speaman’s method. Furthermore, the validation of the selected material is performed by computation fluid dynamic simulations, comparing the best 2 materials, demonstrating that even that copper C12200 is far mor expensive also it outstands steel AISI 1015 on thermal energy transfer, allowing to produce a hotter steam output.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antar, M., Lyu, D., Nazari, M., Shah, A., Zhou, X., Smith, D.L.: Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization. Renew. Sustain. Energy Rev. 139, 110691 (2021). https://doi.org/10.1016/J.RSER.2020.110691. Apr.

    Article  Google Scholar 

  2. Datta, R.G., Sarkar, L.: Energy and exergy analyses of an externally fired gas turbine (EFGT) cycle integrated with biomass gasifier for distributed power generation. Energy 35(1), 341–350 (Jan. 2010). https://doi.org/10.1016/J.ENERGY.2009.09.031

  3. Segurado, R., Pereira, S., Correia, D., Costa, M.: Techno-economic analysis of a trigeneration system based on biomass gasification. Renew. Sustain. Energy Rev. 103, 501–514 (2019). https://doi.org/10.1016/J.RSER.2019.01.008. Apr.

    Article  Google Scholar 

  4. Kilkovsky, B., Stehlik, P., Jegla, Z., Tovazhnyansky, L.L., Arsenyeva, O., Kapustenko, P.O.: Heat exchangers for energy recovery in waste and biomass to energy technologies – I. Energy recovery from flue gas. Appl. Therm. Eng. 64(1–2), 213–223 (2014). https://doi.org/10.1016/J.APPLTHERMALENG.2013.11.041. Mar.

    Article  Google Scholar 

  5. Paraschiv, L.S., Serban, A., Paraschiv, S.: Calculation of combustion air required for burning solid fuels (coal/biomass/solid waste) and analysis of flue gas composition. Energy Rep. 6, 36–45 (2020). https://doi.org/10.1016/J.EGYR.2019.10.016. Feb.

    Article  Google Scholar 

  6. Min, J.K., Jeong, J.H., Ha, M.Y., Kim, K.S.: High temperature heat exchanger studies for applications to gas turbines. Heat Mass Transf. 46(2), 175 (2009). https://doi.org/10.1007/s00231-009-0560-3

    Article  Google Scholar 

  7. Malik, U., Al-Fozan, S.A., Al-Muaili, F.: Corrosion of heat exchanger in thermal desalination plants and current trends in material selection. Desalin. Water Treat. 55(9), 2515–2525 (2015). https://doi.org/10.1080/19443994.2014.940642. Aug.

    Article  Google Scholar 

  8. Nwokolo, N., Mukumba, P., Obileke, K.: Thermal performance evaluation of a double pipe heat exchanger installed in a biomass gasification system. J. Eng. 2020, 6762489 (2020). https://doi.org/10.1155/2020/6762489

    Article  Google Scholar 

  9. Vicuña, L.: Selección y diseño de un intercambiador de calor para la degradación de biomasa de lodos residuales de una planta piloto de gasificación en agua supercrítica. Escuela Superior Politécnica de Chimborazo (2014)

    Google Scholar 

  10. Paredes, E., Gallardo, P.: Diseño y construcción de un sistema de combustión con capacidad de 10KW. Para caracterización térmica de biomasa residual, con aplicación al laboratorio de energias renovables del DECEM. Escuela Politécnica del Ejército (2008)

    Google Scholar 

  11. Delgado, E., Arévalo, A., Ávila, W.: Diseño de un horno intercambiador de biomasa y gas para la generación de calor utilizada en el proceso de secado del arroz. Escuela Superior Politécnica del Litoral (2019)

    Google Scholar 

  12. Dipac: Tubo Cédula 40. Productos (2022). https://dipacmanta.com/producto/tuberia-sin-costura/tubo-cedula-40/tubo-cedula-40/. Accessed 02 Jun. 2022

  13. Montero, C., Vargas, J.: Diseño de un reactor para pirólisis de biomasa residual: raquis de banano y tallos de rosas. Universidad Cantral del Ecuador (2019)

    Google Scholar 

  14. Serrano, G., Rendón, C., Delgado, E.: Optimización de un horno de combustión de biomasa para el secado de arroz. Escuela Superior Politécnica del Litoral (2020)

    Google Scholar 

  15. Montesinos, J.J.: Diseño y Construcción de un Intercambiador de Calor para el Biodigestor a Escala Piloto y Control de las Condiciones de Temperatura. Universidad San Francisco de Quito (2009)

    Google Scholar 

  16. Dismetal: Tuberia de acero inxoidable cedula 10. Productos (2022). https://dismetal.ec/productos/tuberias/acero-inoxidable/cedula-10. Accessed 03 Jun. 2022

  17. Nicolalde, J.F., Cabrera, M., Martínez-Gómez, J., Salazar, R.B., Reyes, E.: Selection of a PCM for a Vehicle’s Rooftop by Multicriteria Decision Methods and Simulation. Appl. Sci. 11(14) (2021). https://doi.org/10.3390/app11146359

  18. Saldanha, W.H., Arrieta, F.R.P., Ekel, P.I., Machado-Coelho, T.M., Soares, G.L.: Multi-criteria decision-making under uncertainty conditions of a shell-and-tube heat exchanger. Int. J. Heat Mass Transf. 155, 119716 (2020). https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2020.119716. Jul.

    Article  Google Scholar 

  19. Garoma, T., Yazdi, R.E.: Algal biomass harvesting using low-grade waste heat: evaluation of overall heat transfer coefficient in a heat exchanger. J. Heat Transfer 143(1) (Nov. 2020). https://doi.org/10.1115/1.4048473

  20. de Best, C.J.J.M., van Kemenade, H.P., Brunner, T., Obernberger, I.: Particulate emission reduction in small-scale biomass combustion plants by a condensing heat exchanger. Energy Fuels 22(1), 587–597 (2008). https://doi.org/10.1021/ef060435t. Jan.

    Article  Google Scholar 

  21. Al-attab, K.A., Zainal, Z.A.: Performance of high-temperature heat exchangers in biomass fuel powered externally fired gas turbine systems. Renew. Energy 35(5), 913–920 (2010). https://doi.org/10.1016/J.RENENE.2009.11.038. May

    Article  Google Scholar 

  22. Simms, N.J., Kilgallon, P.J., Oakey, J.E.: Degradation of heat exchanger materials under biomass co-firing conditions. Mater. High Temp. 24(4), 333–342 (2007). https://doi.org/10.3184/096034007X281640. Dec.

    Article  Google Scholar 

  23. Shen, C., Jiang, Y., Yao, Y., Wang, X.: An experimental comparison of two heat exchangers used in wastewater source heat pump: A novel dry-expansion shell-and-tube evaporator versus a conventional immersed evaporator. Energy 47(1), 600–608 (2012). https://doi.org/10.1016/J.ENERGY.2012.09.043. Nov.

    Article  Google Scholar 

  24. Granta-Design, L.: About Eco-Audit Tool (2019). https://support.grantadesign.com/resources/cesedupack/2019/help/topic.htm#t=html/eco/eco_about.htm%23material. Accessed 15 Feb. 2022

  25. Ecuador, G.M.S.: Tuberia ASTM A53 GrB Cedula 40 - sin costura. FICHA TECNICA TUBERIA DE ACERO CEDULA 40 (2020). https://www.gmsecuador.net/tuberia/tuberia-de-acero/. Accessed 03 Jun. 2022

  26. Construex: Tuberia de cobre para refrigeración. Producto (2022). https://construex.com.ec/exhibidores/metalfuji/producto/tuberia_de_cobre_para_refrigeracion

  27. Odu, G.O.: Weighting methods for multi-criteria decision making technique. J. Appl. Sci. Environ. Manag. 23(8), 1449 (2019). https://doi.org/10.4314/jasem.v23i8.7

    Article  Google Scholar 

  28. Moghtadernejad, S., Chouinard, L.E., Mirza, M.: Multi-criteria decision-making methods for preliminary design of sustainable facades. J. Build. Eng. 19, 181–190 (2018). https://doi.org/10.1016/j.jobe.2018.05.006

    Article  Google Scholar 

  29. Papathanasiou, J., Ploskas, N.: VIKOR. In: Multiple Criteria Decision Aid : Methods, Examples and Python Implementations, pp. 31–55. Springer International Publishing, Cham (2018)

    Google Scholar 

  30. Salazar Loor, R.B., Martínez-Gómez, J., Rocha-Hoyos, J.C., LLanes Cedeño, E.A.: Selection of materials by multi-criteria methods applied to the side of a self-supporting structure for light vehicles. Int. J. Math. Oper. Res. 16(2), 139–158 (2020). https://doi.org/10.1504/IJMOR.2020.105844

  31. Papathanasiou, J., Ploskas, N.: TOPSIS. In: Multiple Criteria Decision Aid : Methods, Examples and Python Implementations, pp. 1–30. Springer International Publishing, Cham (2018)

    Google Scholar 

  32. Emovon, I., Oghenenyerovwho, O.S.: Application of MCDM method in material selection for optimal design: A review. Results Mater. 7, 100115 (2020). https://doi.org/10.1016/j.rinma.2020.100115

  33. Mousavi-Nasab, S.H., Sotoudeh-Anvari, A.: A new multi-criteria decision making approach for sustainable material selection problem: A critical study on rank reversal problem. J. Clean. Prod. 182, 466–484 (2018). https://doi.org/10.1016/j.jclepro.2018.02.062

    Article  Google Scholar 

  34. Beltrán, R.D., Martínez-Gómez, J.: Analysis of phase change materials (PCM) for building wallboards based on the effect of environment. J. Build. Eng. 24(February), 100726 (2019). https://doi.org/10.1016/j.jobe.2019.02.018

  35. Conauto: Mark grundfos bomba centrifuga DS8 DS9 DS10. In: Productos (2022). http://www.conauto.com.ec/index.php/mark-grundfos-bomba-centrifuga-ds8-ds9-ds10/. Accessed 06 Jun. 2022

  36. Nicolalde, F., Cabrera, M., Martínez-Gómez, J., Salazar, R.B., Reyes, E.: Selection of a phase change material for energy storage by multi-criteria decision method regarding the thermal comfort in a vehicle. J. Energy Storage 51, 104437 (2022). https://doi.org/10.1016/J.EST.2022.104437. Jul.

    Article  Google Scholar 

  37. Maheshwari, N., Choudhary, J., Rath, A., Shinde, D., Kalita, K.: Finite element analysis and multi-criteria decision-making (MCDM)-based optimal design parameter selection of solid ventilated brake disc. J. Instit. Eng. (India): Series C 102(2), 349–359 (2021). https://doi.org/10.1007/s40032-020-00650-y

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Martínez-Gómez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nicolalde, J.F. et al. (2023). Material Selection for a Biomass Heat Exchange Multicriteria Decision Methods: Study Case on Ecuador. In: Botto-Tobar, M., Gómez, O.S., Rosero Miranda, R., Díaz Cadena, A., Luna-Encalada, W. (eds) Trends in Artificial Intelligence and Computer Engineering. ICAETT 2022. Lecture Notes in Networks and Systems, vol 619. Springer, Cham. https://doi.org/10.1007/978-3-031-25942-5_30

Download citation

Publish with us

Policies and ethics